RAAD PROPERTY ACQUISITION NO 10 PTY LTD

TRAFFIC AND PARKING IMPACT ASSESSMENT FOR DEVELOPMENT APPLICATION

FOR PROPOSED BUSINESS DEVELOPMENT

AT 2 BACHELL AVENUE LIDCOMBE

REV D

Lyle Marshall & Partners Pty Ltd Consulting Engineers, Architects Transportation and Environmental Planners

Suite 15, 265-271 Pennant Hills Road THORNLEIGH NSW 2120

Phone: (02) 9436-0086 Email: lyle@lylemarshall.com.au

Job No.: 1194-22 Report No.: 34/22 REV D

SEPTEMBER 2024

DOCUMENT CONTROL

Project No: 1194-22 Project: 2 Bachell Avenue Lidcombe Client: Raad Property Acquisition No 10 Pty Ltd File Reference: Report 34/22 Revision D

Revision History

Revision	Date	Details	Approved by
Final	20/1/2023		
Rev A	2/6/2023		
Rev B	16/10/2023		
Rev C	1/12/2023		
Rev D	27/9/2024	Amended to Respond to Council RFI	EME

Disclaimer

This document has been prepared by Lyle Marshall & Partners Pty Ltd for the use of the stated Client only, and addresses the project specifically detailed in this document, and as such should not be considered in regard to any other project. This document has been prepared based on the Client's description of its requirements, information provided by the Client and other third parties. Lyle Marshall & Partners Pty Ltd does not accept any responsibility for the use of or reference to this document other than intended by the stated Client.

CON ⁻	TENTS
------------------	--------------

1.0	INTRODUCTION	1
1.1	Background	1
1.2	Scope of Report	. 1
2.0	EXISTING TRAFFIC CONDITIONS	2
2.1	Existing Road Network	. 2
2.2	Road Inventory and Parking	. 2
2.3	Existing Peak Hour Traffic Volumes	
2.5	Previous Use of Existing Site	. 6
2.6	Vehicle Driveway Access to Site	. 6
2.7	Public Transport	. 6
2.8	Bicycle Paths in Lidcombe	
3.0	TRAFFIC EFFECTS OF PROPOSED DEVELOPMENT	7
3.1	Floor Areas and Uses	. 7
3.2	Car Parking Requirements	. 8
3.3	Car Parking Provision	. 9
3.	3.1 Motorbike Parking	10
3.	3.2 Provision for Visitor Parking	10
3.	3.3 Rideshare (e.g., UBER)	10
3.	3.4 Car Share Spaces	10
3.	3.5 Provision for Car Parking for Persons with a Disability	11
3.	3.6 Bicycle Storage Facilities	12
3.	3.7 Car Parking Demand Profile Analysis	13
3.4		14
3.	4.1 Basement Carparking Layout B1 and B2	14
3.	4.2 Carparking Layout Lower Ground Floor	14
3.	4.3 Ramp Layout and Circulation	14
3.5	Estimated Traffic Generation	
3.	5.1 Multi-purpose Trips and Reduction in Traffic Generation	19
3.6	Future Traffic Volume Assignment to Road Network	
3.7	Future Intersection Performance	
3.8	Background Traffic Intersection Performance to 2032	22
3.9	Network Model	24
3.10		
4.0	GEOMETRIC DESIGN OF CAR PARKS AND RAMPS	29
4.1	General	
4.2	Geometric Design of Car Parks	
4.3	Swept Path Analysis	
4.4	Ramp Gradients	30
5.0	SUMMARY	31

LIST OF FIGURES:

- Figure 1 Locality Plan
- Figure 2a Street Inventory Plan
- Figure 2b Traffic Count Locations
- Figure 3 Existing AM and PM Peak Hour Traffic Volume Counts Amended
- Figure 3a Nearmap Image of Construction Site at 2 36 Church Street Lidcombe. Image date 28/10/22
- Figure 4 Public Transport Networks
- Figure 5 Travel Zone Locations
- Figure 6a Trip Assignment Employees Journey to Work
- Figure 6b Trip Assignment Employees Journey from Work
- Figure 7a Trip Distribution to Road Network of development volumes AM Peak Hour
- Figure 7b Trip Distribution to Road Network of development volumes PM Peak Hour
- Figure 7c Future Development Peak Hour Volumes at Site Driveway Intersection
- Figure 8a Existing Peak Hour Traffic Volumes Plus Development AM Peak Hour Traffic Volumes
- Figure 8b Existing Peak Hour Traffic Volumes Plus Development PM Peak Hour Traffic Volumes

APPENDICES:

APPENDIX A

Concept Drawings prepared by Two Form Architecture & Interior Design:

- Basement 2 Floor Plan DA100 Rev B
- Basement 1 Floor Plan DA 101 Rev B
- Lower Ground Floor Plan DA 102 Rev B
- Ground Floor Plan DA103 Rev B
- Level 1 Floor Plan DA 104 Rev B
- Level 2 Floor Plan DA 105 Rev B
- Level 3 Floor Plan DA 106 Rev B
- Level 4 Floor Plan DA 107 Rev B
- Level 5 Floor Plan DA 108 Rev B
- Level 6 Floor Plan DA 109 Rev B
- Level 7 Floor Plan DA 110 Rev B
- Level 8 Floor Plan DA 111 Rev B

APPENDIX B

Existing Peak Hour Traffic Counts

- Church Street/ Railway Street 7-9am carried out Wednesday 7/12/22
- Church Street/ Railway Street 4-6pm carried out Thursday 17/11/22
- Arthur Street/ Railway Street 7-9am and 4-6pm carried out Thursday 17/11/22
- Church Street/ Bachell Ave 7-9am carried out Wednesday 7/12/22
- Church Street/ Bachell Ave 4-6pm carried out Monday 5/12/22
- Church Street/ Railway Street Bridge 7-9am and 4-6pm carried out Friday 18/11/22
- Church Street/ Swete Street 7-9am carried out Wednesday 7/12/22
- Church Street/ Swete Street 4-6pm carried out Monday 5/12/22

APPENDIX C

- Existing Peak Hour Traffic Volumes Intersection Analysis SIDRA
- Future Peak Hour Volume Intersection Analysis SIDRA

APPENDIX D

- Auburn Council LGA Cycling Routes
- Existing and Future Bicycle Paths

APPENDIX E

- Report No 19/23 Technical Paper No 2 Hourly Modelling for Acoustic Analysis
- Car Parking Demand Profile Analysis
 - Weekdays
 - Weekends
- Car Parking Demand Analysis
 - Weekdays
 - Weekends

APPENDIX F

- 01 General Layout Plan Basement B2 Drawing No 1194-1-22-01
- 02 Basement B2 Swept Path Diagrams B99 scale 1-500 Drawing No 1194-1-22-02
- 03 Basement B2 Swept Path Diagrams B99 scale 1-250 Drawing No 1194-1-22-03
- 04 General Layout Plan Basement B1 Drawing No 1194-1-22-01
- 05 Basement B1 Swept Path Diagrams B99 scale 1-500 Drawing No 1194-1-22-02
- 06 Basement B1 Swept Path Diagrams B99 scale 1-250 Drawing No 1194-1-22-03
- 07A Lower Ground Ramp Layout scale 1-250 Drawing No 1194-1-22-7A
- 07 Lower Ground General Layout Drawing No 1194-1-22-07
- 08 Lower Ground Plan and Swept Paths for SRV Vehicles Drawing No 1194-1-22-08
- 09 Lower Ground Showing SRV Paths scale 1-250 Drawing no 1194-1-22-09
- 10 Lower Ground showing B85 & B99 Vehicle Swept Paths scale 1-500 Drawing 1194-1-22-10
- 11 Lower Ground showing B85 & B99 Vehicle Swept Paths scale 1-250 Drawing 1194-1-22-11
- 12 Ground Floor General Layout Plan Drawing No 1194-1-22-12
- 13 Ground Floor Plan showing SRV swept paths scale 1-500 Drawing No 1194-1-22-13
- 14 Ground Floor Plan showing MRV swept paths scale 1-500 Drawing No 1194-1-22-14
- 15 Ground Floor Plan showing MRV Loading swept paths scale 1-250 Drawing No 1194-1-22-15
- 16 Ground Floor Plan showing MRV turning swept paths scale 1-250 Drawing No 1194-1-22-16
- 17 Ground Floor Plan showing ambulance and SRV turning swept paths scale 1-250 Drawing No 1194-1-22-16
- 18 Level 2 Floor Plan General Layout Drawing No 1194-1-22-18
- 19 Level 2 Ramp Layout Plan Scale 1:250 Drawing o 1194-1-22-19
- 20 Level 2 MRV(Garbage Vehicle) Swept Paths Scale 1:500 Drawing No 1194-1-22-20
- 21 Level 2 MRV(Garbage Vehicle) Swept Paths Scale 1:250 Drawing No 1194-1-22-20

- 22 Level 2 SRV Swept Paths Scale 1:250 Drawing No 1194-1-22-20
- 23 Longitudinal Section Scale 1:250 Through inside edge of ramp Drawing No 1194-1-22-22

APPENDIX G

- Possible Mitigation Measure at Church St/ Railway St Intersection
- Figure 9: Railway Street and Church Street Intersection
- Figure 10: Nearmap Overlay Image at Church St/Railway St Intersection
- SIDRA Analysis of Mitigation at Church Street-Railway Street with Future Development

APPENDIX H

• Probability of Delay at the proposed intersection at the Site driveway and Bachell Avenue

APPENDIX I

• Supplementary Technical Report No 1 Parking Rates, Trip Distribution and Traffic Generation from Proposed Development Site Report No 15-23

APPENDIX J

• Report No 18/23 Utilisation and Capacity Analysis for Loading Spaces for Specialised Retail.

APPENDIX K

- Network Model SIDRA Analysis for the following intersections
 - Swete Street/ Church Street
 - Martin Street/ Church Street
 - Bachell Avenue/ Church Street
- For the following scenarios
 - Existing AM Network
 - Existing PM Network
 - Existing AM Network Plus Background Traffic Growth to 2032
 - Existing PM Network Plus Background Traffic Growth to 2032
 - Future AM Development
 - Future PM Development

1.0 INTRODUCTION

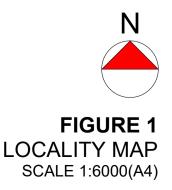
1.1 Background

This report has been prepared in support of a Development Application to be submitted to Cumberland Council in relation to land at 2 Bachell Avenue, Lidcombe.

This Traffic and Parking report has been prepared to assess the traffic and parking impacts associated with the traffic generated by the proposed development.

The site is shown in **Figure 1 Locality Plan**. The site is also known as Lot 2 DP 219413 and is located on the eastern side of Bachell Avenue. The site area is 8738m².

The proposed development is located approximately 893 metres from Lidcombe Railway Station. The town centre is also located on the northern and southern side of the Railway Station. To the west of Bachell Avenue is a residential area and south of the subject site is the Transport for NSW Flemington Maintenance Centre.


1.2 Scope of Report

This report addresses the traffic and parking impacts arising from the operation of the proposed business development generally in accordance with *Section 2 of the RTA Guide to Traffic Generating Developments* and describes our investigations and findings in respect of the following matters: -

- Road Inventory and Traffic Controls.
- Existing traffic volumes.
- Parking requirements and provision.
- Access to the site.
- Future traffic generation by the development.
- Assignment of Traffic to the Existing Road Network System
- Internal parking layout and traffic circulation.
- Delivery and service vehicles.
- Traffic and parking impacts.
- Future AM Background (BTG 2032) + Development Volumes
- Future PM Background (BTG 2032) + Development Volumes

1

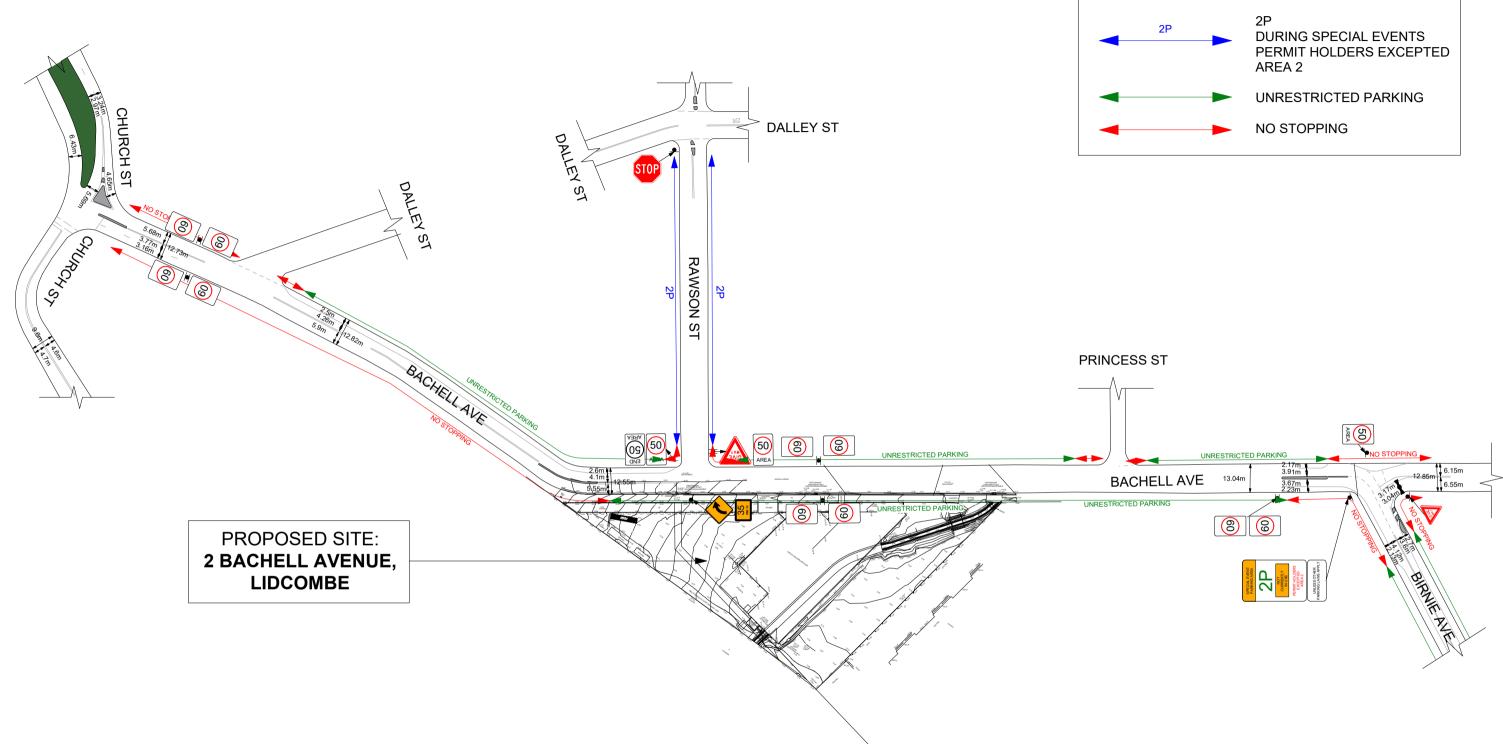
2.0 EXISTING TRAFFIC CONDITIONS

2.1 Existing Road Network

The site has a frontage of approximately **203.935** metres to Bachell Avenue and is triangular in shape and has a site area of **8738m**². The site is also known as **Lot 2 D.P. 219413.** The site is located in Lidcombe and is approximately **893** metres from Lidcombe Railway Station from the south western corner (boundary) of the site.

Bachell Avenue runs north-south and has two lanes in each direction (one for kerb side parking and one for traffic flow). Bachell Avenue connects to Church Street south of the subject site and Birnie Avenue north of the subject site. Bachell Avenue connects to Parramatta Road with an unsignalised intersection.

The Road Inventory and number of traffic lanes are illustrated in **Figure 2a Street Inventory**.


2.2 Road Inventory and Parking

Bachell Avenue has a 60km/hr speed limit and is 13.04 metres wide kerb to kerb. The nearest cross street is Rawson Street which has a 50km/hr speed limit and has restricted 2P special event parking. Many of the local residential streets to the west of Bachell Avenue have 2P special event parking to restrict patrons attending events at Olympic Park from parking in these residential streets. These signs are shown in **Photographs P1** and **P2**.

Bachell Avenue has unrestricted parking on both sides. Refer to **Figure 2a Street Inventory**.

Roadworks are under construction at Church Street/Martin Street intersection and the right turn into and out of Martin Street is prevented now by barricades and in the future by roadworks.

Photograph P3 shows traffic controllers at the intersection of Martin Street/Church Street and **Photograph P4** queues forming at the intersection of Church Street/Swete Street taken on 18/11/2022. The construction site is shown in aerial photograph image in **Figure 3a**.

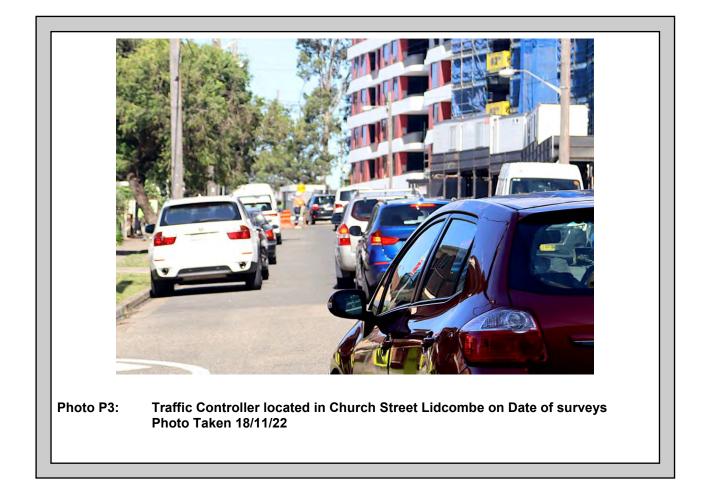

LEGEND	
2P	2P DURING SPECIAL EVENTS PERMIT HOLDERS EXCEPTED AREA 2
◄ ►	UNRESTRICTED PARKING
◄ ►	NO STOPPING

FIGURE 2a STREET INVENTORY 2 BACHELL AVE, LIDCOMBE SCALE - 1:1750(A3)

AERIAL IMAGE OF CONSTRUCTION SITE AT 2-36 CHURCH STREET LIDCOMBE FIGURE 3a K 7 Martin St. church St Fri Oct 28 2022 **1** Vertical 5 SWete

2.3 Existing Peak Hour Traffic Volumes

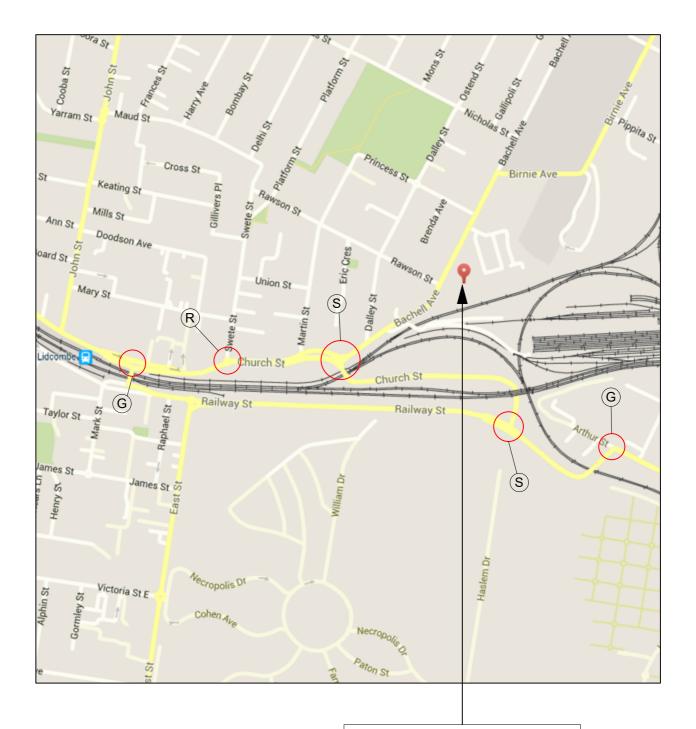
Traffic counts were made at the following intersections in 15-minute intervals on Thursday 17/11/22 and Friday 18/11/22 from 7:00am to 9:00am and 4:00pm to 6:00pm to correspond with the commuter peak hours. The location of the Traffic Counts are shown in **Figure 2b**.

- Church Street/Railway Street 7-9am Wednesday 7/12/22 and 4-6pm Thursday 17/11/22
- Arthur Street/Railway Street 7-9am and 4-6pm Thursday 17/11/22
- Church Street/Bachell Ave 7-9am Wednesday 7/12/22 and 4-6pm Monday 5/12/22
- Church Street/Railway Street Bridge 7-9am and 4-6pm carried out Friday 18/11/22
- Church Street/Swete Street 7-9am Friday 7/12/22 and 4-6pm Monday 5/12/22

The AM peak hour was 8:00am – 9:00am at: -

- Church Street and Railway Street Bridge
- Church Street and Swete Street
- Church Street and Railway Street
- Railway Street and Arthur Street
- Church Street and Bachell Ave

The AM peak hour was 7:45am – 8:45am at Church Street/Bachell Avenue.

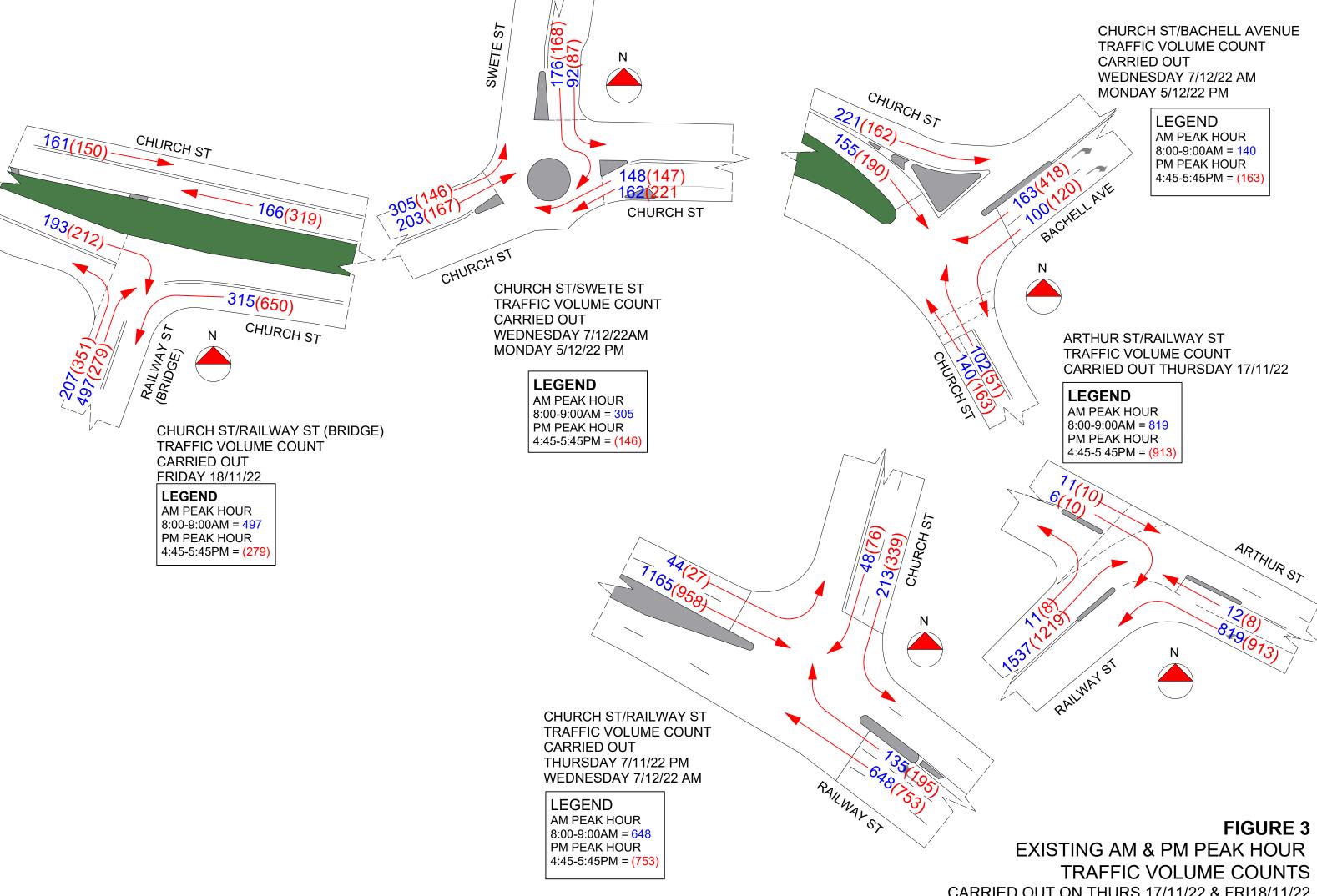

The PM peak hour was 4:45pm to 5:45pm at: -

- Church Street/Railway Street Bridge
- Church Street/Swete Street
- Church Street/Bachell Avenue
- Railway Street/Arthur Street

The PM peak hour was 5:00pm to 6:00pm at

• Church Street/Railway Street

The AM and PM peak hour Traffic Volume Counts are illustrated in Figure 3.



PROPOSED DEVELOPMENT: 2 BACHELL AVE, LIDCOMBE

FIGURE 2b TRAFFIC COUNT LOCATIONS

CARRIED OUT ON THURS 17/11/22 & FRI18/11/22 MON 5/12/22 PM, WED 7/12/22 AM

2.4 Intersection Performance

The signalised intersections have been analysed using SIDRA 9.0 for 8:00am – 9:00am at all intersections and for 4:45pm – 5:45pm at all intersections.

The network performance is determined by the Level of Service (LoS) Average Vehicle Delay (AVD), Degree of Saturation (DoS) and maximum delay on the critical movement during peak hours. The Level of Service criteria for intersections are explained in **Table 4.2** taken from the *RTA Guide to Traffic Generating Developments*.

Table 4.2(RTA Guide to Traffic Generating Developments)Level of Service Criteria for Intersections.

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
Α	< 14	Good operation	Good operation
В	15 TO 28	Good with acceptable delays spare capacity	Acceptable delays & spare capacity
С	29 TO 42	Satisfactory	Satisfactory, but accident study required
D	43 TO 56	Operating near capacity	Near capacity & accident study required
E	57 TO 70	At capacity; at signals, incidents will cause excessive delays Roundabouts require other control mode	At capacity, requires other control mode

Source: RMS Guide to Traffic Generating Developments Version 2.2 – Oct 2002.

(2.4 continued.)

The results of the analysis are set out in Table 2.4 **Table 2.4 Existing Intersection Performance**

No	Location	Control	Peak Hour	Level of Service (Los)	Degree of Saturation (DoS)	Average Delay (Av)	95% Back of Queue Length veh	Critical Movement / queue length
1	Church Street/ Railway Street	S	AM	F	1.186	219.9	12veh 87.8m	LHT from Railway St (west) 415.8 secs
1	Church Street/ Railway Street	S	PM	D	0.974	54	14.8 veh 103.5m	RHT from Railway St (E) 84.7 secs
2	Arthur Street/ Railway Street	G	AM	(N/A) A*	2	25.9	9.8veh 68.8m	RHT Arthur St (east) 2388 secs
2	Arthur Street/ Railway Street	G	РМ	(N/A) A*	0.662	7.3	1.5 10.6m	RHT Arthur St (west) 207 secs
3	Swete St/ Church St	R	AM	A	0.429	6.3	1.8veh 12.3m	RHT from Church St (east) 8.6 secs
3	Swete St/ Church St	R	PM	A	0.324	6.3	2.1veh 14.7m	RHT from Church St (east) 8.6 secs
4	Church St/ Bachell Ave	S	AM	А	0.525	13.1	2.9veh 20.1m	RHT Bachell Ave 20.6 secs
4	Church St/ Bachell Ave	S	PM	В	0.625	16.3	3.1veh 21.7m	THRU Church St (west) 20.9 secs
5	Church Street/ Railway St Bridge	G	AM	(N/A) A*	0.408	5.9	1.7veh 11.8m	RHT Church(W) St 12.7 secs
5	Church Street/ Railway St Bridge	G	РМ	(N/A) A*	0.584	6.6	2.7veh 18.6m	RHT Church St (west) 18.3 secs

NOTES:-

S = SIGNALS

G = GIVEWAY

R = ROUNDABOUT

(1) (2) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.

Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.

- Level of Service is a qualitative measure of performance describing operational conditions. There are six (3) levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.
 - The results in Intersection Summary show NA in the LoS summary however review of the movement summary demonstrates that priority movements operate with plenty of spare capacity.
 - Approach refers to the approach direction to the intersection. For each Arthur Street East . Approach is the eastern side of Arthur Street to the intersection of Railway Street.

2.5 Previous Use of Existing Site

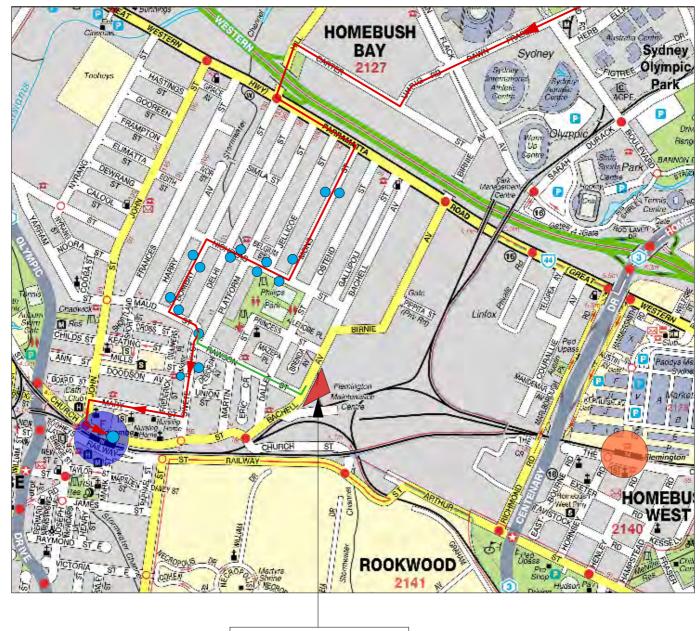
The existing site is used as a warehouse/factory building for commercial laundry business. The warehouse/factory building has an approximate gross floor area of 1974sqm and an ancillary office area of 200sqm.

A total GFA of 2174sqm. According to the *RMS (RTA) Guide to Traffic Generating Developments* the existing traffic generation can be calculated as follows: -

Factory - Daily Trips = $5 \text{ trips per } 100\text{m}^2$ Morning Peak Hour Trips = $1 \text{ per } 100\text{m}^2$ = 21.74 trips

2.6 Vehicle Driveway Access to Site

There are two existing vehicular laybacks in Bachell Avenue. One driveway is located near the northern corner of the site and the other one is located near the centre of the site.

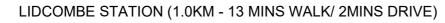

2.7 Public Transport

The site is well served by public transport services. Lidcombe Railway Station is 893 metres from the proposed development site, a 15 minute walk. The nearest bus stop is located in Swete Street/Rawson Street intersection which services Sydney Buses Route 401 Lidcombe to Olympic Park and is a 9-minute walk. Public transport networks are shown in **Figure 4**.

2.8 Bicycle Paths in Lidcombe

The nearest *on road cycle route* runs north-south along Bachell Avenue north of Nicholas Avenue to Parramatta Road. A copy of Auburn Council's bicycle network map is located in **Appendix D**.

An off-road cycleway for recreational engagement is located in Philips Park between Nicholas Avenue and Platform Street west of the subject site.


PROPOSED SITE: 2 BACHELL AVENUE, LIDCOMBE

LEGEND

BUS STOPS

9 MINS WALK TO BUS STOP NO. 214132 SWETE STREET NEAR RAWSON STREET

SWETE STREET BUS STOP NO. 214132 TO LIDCOMBE STATION BUS STOP NO. 2141173 ROUTE NO. 401 (SYDNEY OLYMPIC PARK TO LIDCOMBE)

FLEMINGTON STATION (2.7KM - 6 MINS DRIVE)

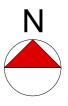


FIGURE 4 PUBLIC TRANSPORT NETWORKS

3.0 TRAFFIC EFFECTS OF PROPOSED DEVELOPMENT

3.1 Floor Areas and Uses

The gross floor areas for the proposed uses have been calculated by *Two Form Architecture and Interior Design* and is shown on drawings DA700, DA701 and DA702 They are shown on the architectural plans for basement one, lower ground, ground floor and levels 1 to 8. The proposed gross floor areas and uses shown on the plans are summarised in **Table 3.1**.

			Gross Floor Area m ²										
	Land Use Groups	Basement One	LGF	Ground	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7	Level 8	Total
	Food and Drink Premises			1167									1167
	Restaurant				1359								1359
	Café								159				159
	Gym		596	267									863
Note 1*	Heath Services			525			1005	1005					2535
	Dog Daycare											303	303
	Centre Based Childcare								711				711
Note 2*	Light Industries			821		926	66						1813
	Neighbourhood Shop					28							28
	Specialised Retail			904	1115	803	610						3432
Note 4*	Self Storage		392										392
	High Technology					2216	1621	3275					7112
	Office Premises								1487	2191	1680	683	6041
Note 3*	TOTAL	0	988	3684	2474	3973	3302	4280	2357	2191	1680	986	25915

 Table 3.1
 Proposed Uses and Gross Floor Areas

Note 1* Includes Health Business Premises Pharmacy at Level 1

Note 2* Tenancies denoted as Workspaces are defined as Light Industries

Note 3* This excludes the lobbies, common WCs and the mail room but includes the self storage.

Note 4* This use does not have an attributable gross floor area as defined by the Cumberland LEP 2021, however is included as it generates parking demand and trip generation.

7

3.2 Car Parking Requirements

The car parking requirements have been calculated for each main land use group in accordance with *Cumberland DCP Part 6 Table 1*. and *the RMS Guide to Traffic Generating Developments* and RMS data and survey data where there are no specific car parking rates provided.

	Use	Area m ² GFA	survey data	Rate - CDCP PART G3	TfN SW- RMS GTGD	Rate Decimal	Total	
Note 1A*	Specialised Retail*	3432	1/70s qm			0.0143	49	
	Light Indus tries	1813		1.3/100 s qm		0.013	24	
	High Technology	7112		1.3/100 s qm		0.013	92	
Note 1B*	Café	159		1/40 s qm		0.025	4	
	Food and Drink	1167		1/40 s qm		0.025	29	
Note 2*	Food and Drink Restaurant	1359		1/40 s qm		0.025	34	
Note 2*	Dog Daycare	303	1/100s qm			0.01	3	Note 6*
	Health Services	2535			4 s paces per 100m ² GFA	0.04	101	
	Office Premises	6041		1/40 s qm		0.025	151	
Note 3*	Centre Base Childcare Facility	711		1/4 children (106 children)	RMS Centre Based Guidelines		27	
	Subtotal						515	
Note 8*	Self-Storage	392		1/300 s qm		0.003	1	Note 5*
Note 4 *	Gymnas ium	863		3/100m ²	3/100m ²	0.03	28	Note 5*
	Neighbourhood Shop	28		1/40 s qm		0.025	1	
Note 7*	Total	25915					542	l

Table 3.2a Parking Requirement

Note 1A* No rate provided in CDCP for specialised retail. A rate of 1 space per 70m 2 has been adopted based on RMS survey data. Refer to Appendix1 Report 15-23.

Note 1B* The rate of 1/40s qm was approved with the Planning Proposal.

- Note 2* Rates taken from approved DoggyDayCare centres at 1 s pace/100 m².
- Note 3* Parking rate for childcare centre based on number of children. 108 children. RMS rate adopted.

- Note 5* A Peak Demand Analysis has been prepared that demonstrated that this use does not peak at the same time as office use and therefore the number of spaces required can be reduced.
- Note 6* Based on similar approved facilities only requires 1 space per staff and a loading space. (3 staff spaces).
- Note 7* Total GFA includes lobbies and toilets but excludes selfs torage = 25523m2.

Note 4* Gymnas ium located within retail/commercial complex. Peak 5:30 - 6:30 pm weekdays. 8 s paces provided for Gymnas ium parking can be shared with the office premises as peak activity for gymnasium occurs in the evenings after 5:30 pm. RMS rate of 3/100s qm has been adopted.

(3.2 continued.)

PROVISION	Car Spaces		Loading Bays					
		B99	SRV	MRV	Ambulance			
B2	194	1						
B1	183	2						
LG	119	5	6					
G	0			4	1			
Level 2	0		1					
Total	496	20						

Table 3.2b

* Includes Ambulance parking space

** This includes rideshare (1) and car share (2) spaces

Refer to **Table 3.9** of the report for calculation of loading spaces.

The warehouse/ industry units on the Ground Floor and Level 2 have their own selfloading facility. Each unit is designed to accommodate a small rigid vehicle (SRV) or van. There are 11 on Ground Floor (G) and 11 on Level 2. These are included in carparking spaces not loading spaces.

3.3 Car Parking Provision

The car parking spaces shown on the drawings prepared by Two Form Architecture and Interior Design and listed in **Appendix A** are as follows: -

Basement 2	194
Basement 1	183
Lower Ground Floor	116 + 2 car share + 1 ride share
Ground Floor	0
Level 2	0
Total	496

We recommend the provision of 8 spaces to be shared between gymnasium and office use. There are also two (2) car share spaces and 1 ride share space which is included in the parking provided in the table above. Refer to section 2.3 in **Report 15/23** in **Appendix I**.

It should be noted that 24 loading spaces are provided within each of the Light Industrial tenancies. These loading spaces are in additional to the car parking provided and therefore means that the total car parking supply is **520**.

The shortfall is justified by the provision of a Green Travel Plan which includes bicycle car parking, motorbike parking (12) spaces and 2 car share spaces and a ride share space which reduces the car parking dependency. The car parking demand profile analysis contained in **Appendix E**.

3.3.1 Motorbike Parking

Motorbike parking allows an alternative travel mode and more efficient parking layout and the space required for motorbike parking in accordance with AS/NZS 2890.1 – 2004 is 1.2m wide and 2.5m long.

A provision of 12 (11.4) parking spaces has been provided for motorbike parking. This would cater for alternative transport modes within the centre.

The parking rate provision of 1 space per 50m² is similar to the bicycle parking rate for specialized retail use.

We have investigated other Councils and parking provisions for motorbike parking.

Council	Use	
Canterbury/Bankstown	Commercial	Motorbike parking provision for 1 courier parking space, provision of additional parking spaces for motorbike parking is desirable.
Ku-ring-gai Council	Commercial/Business	1 courier space for developments over 200m ² .
Inner West Council	All	5% of car parking required for each use.

3.3.2 **Provision for Visitor Parking**

There are no specific rates provided for visitor parking under the controls listed in the *CDCP*. The *RMS Guide to Traffic Generating Developments* does not stipulate rates for specialised retail, office premises etc. it only provides rates for residential use.

3.3.3 Rideshare (e.g., UBER)

1 car parking space is allocated within the lower ground floor car park for a courier or Uber car share parking space. This will allow for an alternative travel mode to the facility and reduce car travel dependency, especially for trips to restaurants and cafes or for commercial businesses.

3.3.4 Car Share Spaces

Two (2) car share spaces are allocated for car share similar to "GoGet" provider within the lower ground floor car park.

3.3.5 **Provision for Car Parking for Persons with a Disability**

Disabled car parking should be provided in accordance with *AS/NZS 2890.6* and space layout dimensions are to be provided in accordance with *Figure 1 Dimensions of Angled Car Parking Spaces*.

There are no specific controls for the number of disabled car parking spaces provided in *Cumberland Development Control Plan 2021*, the number of spaces is provided in accordance with *Part D3.5 Accessible Car Parking* of the *National Construction Code 2019 Amendment*.

Table 3.3.5a Number of Accessible Spaces Required in Accordance with D3.5 (NCC 2019 Amendment 1)

Class of Building Use	Rate
Class 5 office premises	1 space per 100 car parking spaces
Class 6, 7 and 8 (specialised retail, restaurants, cafes)	1 space per every 50 car parking space

Use	Rate	Total car	Total Accessible Spaces	
USe	Rate	parking spaces		
Specialised Retail	0.02	49	0.98	
Light Industries*	0.01	24	0.24	
High Technology*	0.01	90	0.9	
Café	0.02	4	0.08	
Food and Drink	0.02	29	0.58	
Food and Drink Restaurant	0.02	34	0.68	
Dog Daycare	0.02	3	0.06	
Health Services	0.02	108	2.16	
Office Premises	0.01	151	1.51	
Centre Base Childcare	0.02	27	0.54	
Facility				
Storage	0.01	1	0.01	
Gymnasium	0.02	26	0.52	
Neighbourhood Shop	N/A	1		
Total			8.26	

Table 3.3.5b Parking Requirements – Persons with a Disability

9 spaces rounded up

A total of 11 car parking spaces for persons with a disability are provided within the facility.

3.3.6 Bicycle Storage Facilities

Table 1 in *Part G3 of the Cumberland DCP* lists bicycle parking rates for a number of proposed uses in this business development. The parking requirement has been calculated based upon *Table 1* in the *DCP* and the proposed Uses and Floor Areas are shown in **Table 3.1** of this report. The parking requirement for each use is listed in **Table 3.3.6** and is considered to be conservative.

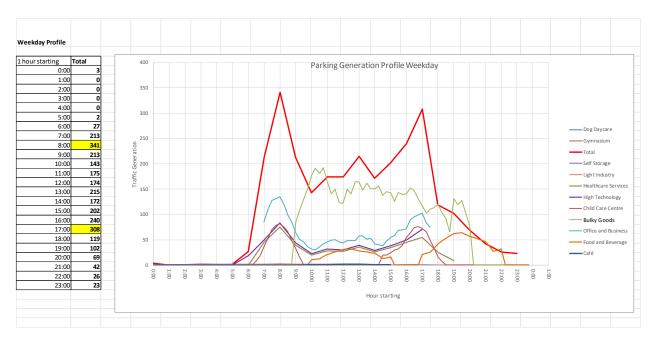
Use	Gross Floor	Bicycle Parking Rate	No of Spaces		
	Area m ²	Staff	Visitors		
Food and Drink Premises	1167	1 per 100m ²		12	
Restaurant	1359	1 per 100m ²		14	
Café	159	1 per 100m ²		2	
Gymnasium	861	1 per 4 employees (Assume 4)	1 per 200m ²	1 + 4.3	
Specialised Retail * Note 1	3432+28	1 per 10 employees (Assume 1 per 50m ²) Assume 69 employees	1 per 750m ² over 1000m ²	7 + 3.2	
Office Premises	6041	1 per 10 employees (Assume 1 per 25m ²) Assume 241 employees	1 per 750m ² over 1000m ²	25 + 7	
Light Industries	1813	NA	NA		
High Technology	7112	NA	NA		
			Total	76 (rounded)	

 Table 3.3.6
 Bicycle Parking Spaces (Retail)

Note 1* No specific rate for specialised retail. The rate for retail has been used

Based upon *AS 2890.3* bicycle racks in a secure room with Security Level B would be appropriate for this development. There are storage cages on Basement 2 that are accessible, have lift access and storage racks have been provided for 82 bicycles: 45 on Lower Ground Floor and 37 on B1 Level.

Further detailed analysis of public transport and green travel incentives is included in Green Travel Plan **Report No 14/23**.


3.3.7 Car Parking Demand Profile Analysis

Parking in land uses, exhibit temporal variation of their demand over the course of the day (uses that attract customers at different times of the day serve to make efficient use of parking supply) from food and drink premises in the morning and to restaurant dining in the evenings, with health services, specialised retail, gymnasium, and office use in the day and light industry and high technology uses.

The parking demand profiles which were analysed using real survey data and TfNSW data analysis and ITE analysis data to create the demand profiles for traffic generation. The same methodology can be adopted for car parking demand analysis.

Noting that the parking demand varies per use, the appropriate methodology is to create shared visitor parking. This way, office visitor parking, which does not have a high weekend demand, is not sitting idle whilst the specialised retail visitor parking demand is high. Similarly demand for gymnasium car parking will peak in the evenings outside of normal office business hours.

The hourly peak traffic generation demand was analysed in **Technical Report 19-23 Appendix E**. Parking demand has been analysed based on peak traffic generation demand per hour.

The results of the car parking demand profile analysis is included in **Appendix E** of this report.

3.4 Geometric Layout and Circulation

3.4.1 Basement Carparking Layout B1 and B2

The dimensions of the 90 degree angle parking spaces are 2.6m wide by 5.4m long and the aisle widths vary from a minimum of 5.8 metres to a maximum of 7.1 metres. The geometric layout complies with User Class 3 in *Figure 2.2* in *AS/NZS 2890.1*.

All aisle widths have been adjusted to comply with the requirements for class 3A car parking spaces for the childcare centre. Aisle widths are 6.6 metres wide and car parking spaces are 2.6 metres wide.

Dead End Aisles

In the dead end aisles that exceed the minimum requirements stated in *AS/NZS AS2890.1 Cl 2.4.2 c*) a turning bay has been provided where the number of spaces exceed size car parking spaces.

3.4.2 Carparking Layout Lower Ground Floor

The aisle width with access to SRV and loading Van spaces has increased to 7.1 metres wide to facilitate the turning movements for small rigid vehicles. SRV parking spaces are 3.5 metres wide by 6.4 metres long and comply with *AS2890.2-2018*.

3.4.3 Ramp Layout and Circulation

The ramps to the lower ground floor facilitate Small Rigid vehicles accessing the lower ground floor. Gradients have been provided in accordance with Table 3.3 of *AS2890.2-2018* and are shown on the plans in **Appendix F**.

Ramp Gradients for the ramps to the upper level 2 car park facilitate Small rigid trucks and garbage vehicles up to 8.8 metres long. Ramp Grades are shown with a 2.5% grade for the first 6 metres then a transition grade of 8.3% and then a grade of 13.77% with a maximum grade of 15.4% then another grade of 13.68% then a grade of 6.25% over 7 metres to RL level 20.9 in accordance with *AS2890.2-2018*. The longitudinal section has been provided for the nearside edge of the ramp to show compliance with ramp gradients. This drawing is located in **Appendix F** of this report.

3.5 Estimated Traffic Generation

The traffic generation has been estimated using the rates in *Section 3* of the *RMS Guide to Traffic Generating Developments 2002* and updated traffic surveys TDT 2013/04a. Trip generation rates are described below for the following uses:-

Specialised Retail

The rate of 2.7 trips/100m² GFA not GLFA. 20% assignment to AM is acceptable.

In the document (*RMS Guide to Traffic Generating Developments*) a reduction of 20% is acceptable for developments were there are multiple attractors such as specialised retail use, café, dog daycare, restaurant and food and drink premises.

Office Use

The rates for Norwest Business Park in TDT20B/04a of 2.75 trips/100m² GFA for AM and 1.17 trips/100m² GFA for the PM have been adopted based on recent agreement with TfNSW on DA No 2022/0463.

A green travel plan has been provided for the centre to support the reduction for linked trips and encourage staff employees to use the extensive surrounding off road bicycle paths. It may be possible to further reduce car dependency based on the alternative active travel mode.

A 5% reduction has been adopted to implementation of a green travel plan and the close proximity of an off road cycle path is located north of the development site.

Food and Drink Premises

The rate from the *RMS Guide to Traffic Generating Developments* has been adopted for food and drink premises within commercial retail centres where:-

Vehicle(P) = vehicles trips per $1000m^2 = 46A(SS)$ Whereby SS = speciality shops and take away food shops which are not the primary attractors to the centre.

The traffic generation has been calculated as $46 \times 1542/1000 = 70.9.100\%$ trips for the PM. In the AM peak hour 20% of trips are assigned to staff.

Restaurant

The rate for the restaurant adopted is 5 trips per $100m^2$ GFA in the PM peak hour. An allowance of $1/100m^2$ GFA is adopted for the AM peak hour for staff trips.

Café

The café is open in the morning AM peak hour so 5/100m² GFA is provided and 1/100m² GFA in the PM peak hour. This rate has been adopted at similar developments.

(3.5 continued.)

Light Industry/ High Technology

The rate used has adopted the business and industrial parks rates from TDT2013/04a of AM peak hour Rate $0.52/100m^2$ GFA and PM peak hour rate of $0.56/100m^2$ GFA.

High technology use uses the same rates as Light industrial.

Self Storage

The rate for warehouse and distribution is adopted from the *RMS Guide to Traffic Generating Developments Section 3.10 Warehouse* of 0.5/100m² GFA.

Healthcare Services

The rates for medical centres and medical consulting rooms were reviewed from the following sources: *Roads and Maritime Services Trip Generation Rates for Medical Centres Analysis Report* by TEF Consulting and *RMS Land Use Data* and *Analysis No 20 Extended Hours Medical Centres*. Whilst the facilities in this development may include some medical consulting use there will be other facilities such as medical offices and support facilities. Health services can include a broad range of services including allied health services. Allied health professionals provide a broad range of diagnostic, technical, therapeutic and direct health services to improve the health and wellbeing of the consumers they support. It may include aged care support, social health support services, disability consulting services, herbal or therapeutic remedies.

The following rates have been applied:-

The AM peak hour rate rate of 1.6/100m² GFA has been adopted. A PM peak hour rate of 3.1/100m² GFA has been adopted.

Dog Day Care

It is assumed for a facility with 303m² GFA there will be 2 staff and 40 animals. The traffic generation for this facility has been based on surveys undertaken at a similar sized facility, The Hound Lounge, located at 212-220 Parramatta Road Annandale with a GFA of 339.3m² GFA. The traffic generation rate pro-rata to GFA is 7.5 trips in and 7.5 trips out in the AM peak hour and 6.75 trips in and 6.75 trips out in the PM peak hour.

The assumed traffic distribution is 80% IN and 20% OUT in the AM peak hour and 80% OUT and 20% IN in the PM peak hour for light industries, high technology and offices. For specialised retail 20% traffic is generated in the morning for employees and 50% IN and 50% out in the PM (100%). The estimated traffic generation is listed in **Table 3.5a**.

(3.5 continued.)

		Peak Hour	Gross Floor Area (m²)		Traffic Generation			Reductions
	Land Use Groups			Generation Rate	IN	OUT	TOTAL	Linked Trips
	Food and Drink Premises ***	AM	1542	46A/1000 X 20%	7.1	7.1	14.2	11.3
		PM	1342	46A/1000 X 100%	35.5	35.5	70.9	56.7
	Specialised Retail ***	AM	3625	2.7/100m ² x 20%	9.8	9.8	19.6	15.7
		PM	3023	2.7/100m ² x 100%	48.9	48.9	97.9	78.3
	Restaurant ***	AM	1154	1 per 100 m ²	9.2	2.3	11.5	9.2
	Restaurant	PM		5 per 100 m ²	28.9	28.9	57.7	46.2
Noto 3	Café ***	AM	150	5 per 100 m ²	4.0	4.0	8.0	6.4
Note 5	Cale	PM	159	1 per 100 m ²	0.0	1.6	1.6	1.3
	Reduction Linked trips 20%	AM			6.0	4.6	10.7	Green Travel
	Reduction Linked trips 20%	PM			22.7	23.0	45.6	Green maver
		AM	2020	0.52 per 100 m ²	12.6	3.2	15.8	15.0
	Light Industries****	PM	3036	0.56 per 100 m ²	3.4	13.6	17.0	16.2
	High Technology Industry****	AM	5700	0.52 per 100 m ²	24.1	6.0	30.1	28.6
		PM	5790	0.56 per 100 m ²	6.5	25.9	32.4	30.8
	Centre Based Child Care	AM	711	0.8 per child	21.2	21.2	42.4	40.3
Note 1	Facility****	PM	(106)	0.7 per child	18.6	18.6	37.1	35.2
Note 7	Self Storage****	AM	054	0.5/100*50% IN &50% OUT	2.4	2.4	4.8	4.56
	Facilities****	PM	954	0.5/100*50% IN &50% OUT	2.4	2.4	4.8	4.56
		AM	881	0.18 per 100 m ²	0.8	0.8	1.6	1.5
Note 2	Symnasium ****	PM		0.9 per 100 m ²	3.96	4.0	7.9	7.5
	Office & Business Premises	AM	6972	2.75 per 100 m ²	153.4	38.3	191.7	182.1
		PM		1.17 per 100 m ²	16.3	65.3	81.6	77.5
	Health Care Services ****	AM	2695	1.6 per 100 m ²	21.6	21.6	43.1	41.0
Note 4		PM		3.1 per 100 m ²	41.8	41.8	83.55	79.4
	Reduction for Green Travel 5%	AM			11.8	4.7	16.5	
	Reduction for Green Travel 5%	PM			4.6	8.6	13.2	
		AM	276	see notes	7.0	7.0	14.0	
Note 5	Dog Daycare	PM			6.3	6.3	12.6	
Note 6	Care Taker	AM/PM	35		-	-	0.0	1
Note 8			27830	TOTAL AM	266.2	116.7	382.8	
				TOTAL PM	206.14	286.33	492.47	1
				AM Reduction for linked trips				1
				and green travel	248.4	107.4	369.7	
				PM Reduction for linked trips				
				and green travel	178.8	254.8	446.2	_

Table 3.5a	Estimated Traffic Generation - Modelled
------------	---

- Note 1 Traffic generation for childcare centres is calculated in accordance with the *RMS Guide to Traffic Generating Developments – Table 3.6 Traffic Generation Rates for Childcare Centres.* Long day is 0.8 trips per child over 2 hours 7 – 9am and 0.7 trips per child over 2 hours 4 – 6pm. Rates are for a 2 hour period and 106 children.
- Note 2 AM rate based upon average 7 sub-regional centres.
- Note 3 Most cafes are very busy in the AM peak hour period. Same rate as for restaurants.
- Note 4 Based upon RTA data.
- Note 5 40 animals. Surveys carried out at a similar centre determined trip generation rate. Factor $0.7 \times 20 = 14$ AM trips and $0.7 \times 18 = 12.6$ trips PM
- Note 6 Caretaker on site. No traffic generation during AM/PM Peak Hours.
- Note 7 This use does not have an attributable gross floor area as defined by the Cumberland LEP 2021, however is included as it generates parking demand and trip generation.
- Note 8 Total GFA includes lobbies and toilets but excludes self storage = $28,075m^2$.
- Note *** Reduction of 20% for linked multipurpose trips.
- Note **** Reduction of 5% for green travel.

(3.5 continued.)

The modelling and SIDRA analysis has been carried out for a higher traffic generation as shown in **Table 3.5a**. Due to reduction in Gross Floor Area and the areas shown in **Table 3.1** of this Report, the traffic generation will be reduced as shown in **Table 3.5b**. There is a reduction in traffic generation in the morning AM peak hour of **26.7** trips and **23.2** trips in the PM Peak Hour.

emises *** il ***	AM AM AM	Gross Floor Area (m ²) 1167	Generation Rate 46A/1000 X 20%	IN 7.1	OUT	TOTAL	Linked Trips
	PM	1167	46A/1000 X 20%	7 1			
		1107		1.1	7.1	10.7	8.6
il ***	AM	1	46A/1000 X 100%	26.8	26.8	53.7	42.9
		3460	2.7/100m ² x 20%	9.3	9.3	18.7	14.9
	PM		2.7/100m ² x 100%	46.7	46.7	93.4	74.7
Restaurant ***	AM	1359	1 per 100 m ²	10.9	2.7	13.6	10.9
	PM		5 per 100 m ²	34.0	34.0	68.0	54.4
	AM	159	5 per 100 m ²	4.0	4.0	8.0	6.4
	PM	109	1 per 100 m ²	0.0	1.6	1.6	1.3
trips 20%	AM			6.3	4.6	10.2	Green Trave
trips 20%	PM			21.5	21.8	43.3	Gleen nave
k	AM	1010	0.52 per 100 m ²	7.5	1.9	9.4	9.0
	PM	1813	0.56 per 100 m ²	3.4	13.6	10.2	9.6
High Technology Industry****	AM	7440	0.52 per 100 m ²	29.6	7.4	37.0	35.1
	PM	7112	0.56 per 100 m ²	8.0	31.9	39.8	37.8
Centre Based Child Care Facility****	AM	711	0.8 per child	21.2	21.2	42.4	40.3
	PM	(106)	0.7 per child	18.6	18.6	37.1	35.2
	AM	202	0.5/100*50% IN &50% OUT	2.4	2.4	4.8	4.56
***	PM	392	0.5/100*50% IN &50% OUT	2.4	2.4	4.8	4.56
Gymnasium ****	AM	962	0.18 per 100 m ²	0.8	0.8	1.6	1.5
	PM	003	0.9 per 100 m ²	3.88	3.9	7.8	7.4
Office & Business Premises	AM	6041	2.75 per 100 m ²	132.9	33.2	166.1	157.8
	PM		1.17 per 100 m ²	14.1	56.5	70.7	67.1
Health Care Services ****	AM	2535	1.6 per 100 m ²	20.3	20.3	40.6	38.5
	РМ		3.1 per 100 m ²	39.3	39.3	78.59	74.7
en Travel 5%	AM			10.7	4.4	15.1	
en Travel 5%	PM			4.5	8.3	12.4	
Dog Daycare	AM	303	see notes	7.5	7.5	15.0	1
	PM			6.8	6.8	13.5	
	•	27795	TOTAL AM	246.0	110.3	352.9]
			TOTAL PM	197.15	275.25	465.55]
			AM Reduction for linked				
			trips and green travel	229	101	343	
	d Care	d Care PM d Care AM PM AM PM AM PM AM PM s Premises AM PM s Premises AM PM es **** AM PM an Travel 5% AM AM	PM 711 d Care AM 711 PM (106) 392 **** PM 392 **** PM 863 **** PM 863 s Premises AM 6041 PM 2535 PM en Travel 5% AM 2535 PM 2535 PM en Travel 5% AM 303 PM AM 303	PM 0.56 per 100 m² d Care AM 711 0.8 per child PM (106) 0.7 per child AM 392 0.5/100*50% IN & 50% OUT **** PM 0.5/100*50% IN & 50% OUT AM 392 0.5/100*50% IN & 50% OUT **** PM 863 0.18 per 100 m² **** PM 6041 2.75 per 100 m² **** AM 6041 2.75 per 100 m² **** AM 2535 1.6 per 100 m² **** PM 3.1 per 100 m² **** PM 303 see notes **** PM 27795 TOTAL AM TOTAL PM AM Reduction for linked 100 m²	PM 0.56 per 100 m² 8.0 d Care AM 711 0.8 per child 21.2 PM (106) 0.7 per child 18.6 AM 392 0.5/100*50% IN & 50% OUT 2.4 **** PM 0.5/100*50% IN & 50% OUT 2.4 AM 392 0.5/100*50% IN & 50% OUT 2.4 AM 863 0.18 per 100 m² 0.8 PM 863 0.9 per 100 m² 3.88 s Premises AM 6041 2.75 per 100 m² 132.9 PM 1.17 per 100 m² 14.1 14.1 wes **** AM 2535 1.6 per 100 m² 39.3 an Travel 5% AM 10.7 39.3 3.1 per 100 m² 39.3 an Travel 5% PM 4.5 6.8 6.8 PM 27795 TOTAL AM 246.0 TOTAL PM 197.15 AM Reduction for linked	PM 0.56 per 100 m² 8.0 31.9 d Care AM 711 0.8 per child 21.2 21.2 PM (106) 0.7 per child 18.6 18.6 18.6 **** PM (106) 0.7 per child 18.6 18.6 18.6 **** PM 392 0.5/100*50% IN &50% OUT 2.4 2.4 **** PM 863 0.18 per 100 m² 0.8 0.8 PM 863 0.9 per 100 m² 3.88 3.9 s Premises AM 6041 2.75 per 100 m² 132.9 33.2 PM 1.17 per 100 m² 14.1 56.5 5 ees **** AM 2535 1.6 per 100 m² 20.3 20.3 ees **** AM 303 see notes 7.5 7.5 PM 4.5 8.3 6.8 6.8 6.8 en Travel 5% AM 303 see notes 7.5 7.5 PM 5775	PM 0.56 per 100 m² 8.0 31.9 39.8 d Care AM 711 0.8 per child 21.2 21.2 42.4 PM (106) 0.7 per child 18.6 18.6 37.1 **** PM (106) 0.7 per child 18.6 18.6 37.1 **** PM 0.5/100*50% IN &50% OUT 2.4 2.4 4.8 AM AM 392 0.5/100*50% IN &50% OUT 2.4 2.4 4.8 PM 863 0.18 per 100 m² 0.8 0.8 1.6 PM 863 0.9 per 100 m² 3.88 3.9 7.8 s Premises AM 6041 2.75 per 100 m² 132.9 33.2 166.1 PM 1.17 per 100 m² 14.1 56.5 70.7 ses **** AM 2535 1.6 per 100 m² 20.3 20.3 40.6 ees **** AM 2535 1.6 per 100 m² 39.3 39.3 78.59 en Tr

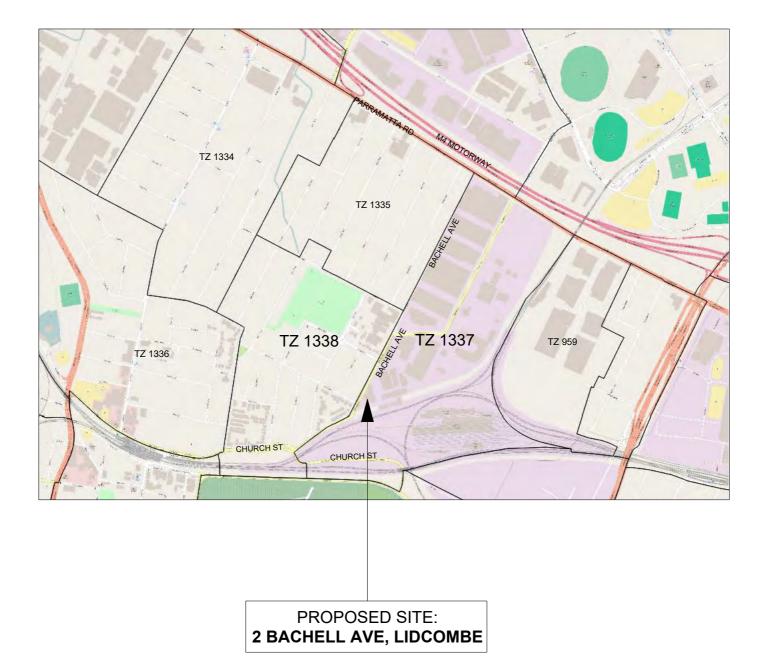
Table 3.5b Estimated Traffic Generation - Reduced

- Note 1: Traffic generation for childcare centres is calculated in accordance with the RMS Guide to Traffic Generating Developments Table 3.6 Traffic Generation Rates for Childcare Centres. Long day is 0.8 trips per child over 2 hours 7 9am and 0.7 trips per child over 2 hours 4 6pm. Rates are for a 2 hour period and 106 children.
- Note 2: AM rate based upon average 7 sub-regional centres
- Note 3: Most cafes are very busy in in the AM peak hour period. Same Rate as for restaurants
- Note 4: Based upon RTA data
- Note 5:40 animals. Surveys carried out at a similar centre determined trip generation rate.Factor 0.75 x 20=15 AM trips and 0.75 x 18=13.5 trips PM
- Note *** Reduction of 20% for linked multipurpose trips
- Note**** Reduction of 5% for green travel

Multi-purpose Trips and Reduction in Traffic Generation 3.5.1

with this figure reducing with increasing centre size, with rates of 25% (less than 10,000m² GLFA), 20% (10,000-30,000m² GLFA) and 15% (over 30,000m² GLFA) indicative" as stated in the RMS Guide to Traffic Generating Developments Section 3 Land-Use Traffic Generation. A multi-purpose trip is where more than one shop or facility is visited. Any trip discounts would apply differently in new free-standing centres and for new shops within existing centres. "An average discount of about 20% is suggested, GLFA) indicative" as

The following uses will be multi-purpose or linked trips within the centre. These are specialised retail, food and drink premises, restaurant and café uses. An applied discount rate of 20% is applied to these uses. The office and business implication of the green travel plan and provision of bicycle parking to promote premises and health services will have a 5% discount rate applied for the active travel.


 $(20873m^2$ GLFA) a 20% reduction would apply to this development for some of data GLFA is 75% of the GFA. For this report traffic generation has been The areas defined in Table 3.6 are gross floor area (GFA). Based upon RTA calculated based upon the GFA areas. For a building area of 27830m² GFA the uses such as café, restaurant, specialised retail and food and drink premises.

Future Traffic Volume Assignment to Road Network 3.6

to the road network in the study area based upon using the BTS-JTW (Bureau of Statistics Journey to Work Explorer) travel zone 1337 and 1338. The travel zones describes trip distribution and traffic generation for the development and assignment to the road network. The additional traffic volumes due to employees are shown in Figure 5. The travel routes for employees and retail customers have We refer to Technical Report No 15/23 included in Appendix I of this report which and retail customers travelling to TZ 1337 and TZ1338 (Table 3.6) in the AM peak hour and returning from work/ shopping in the PM peak hours have been distributed been assigned to the road network as shown in Figure 6A and 6B.

19

Ъ.

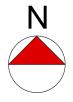
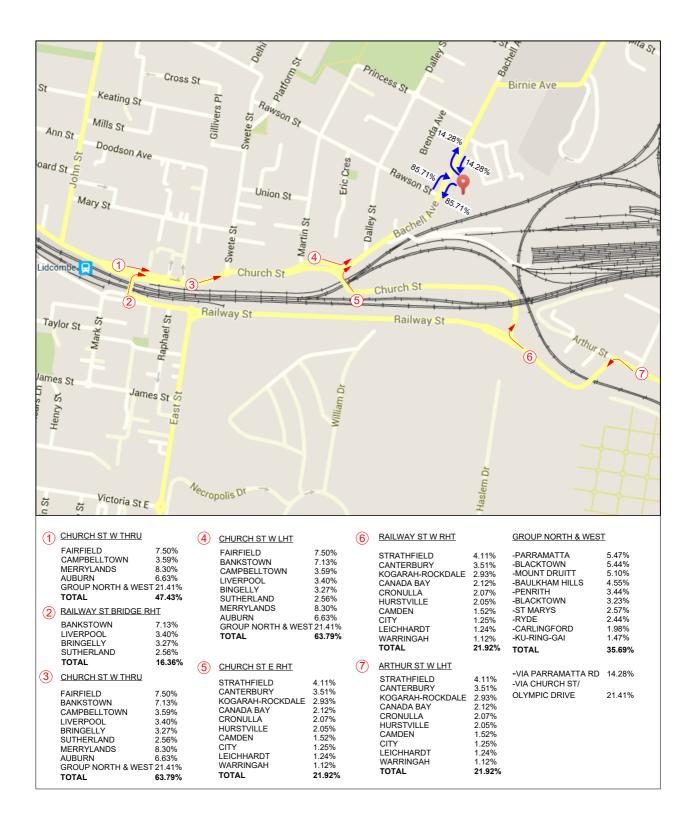



FIGURE 5 TRAVEL ZONE LOCATIONS

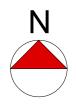


FIGURE 6A TRIP ASSIGNMENT EMPLOYEES JOURNEY TO WORK

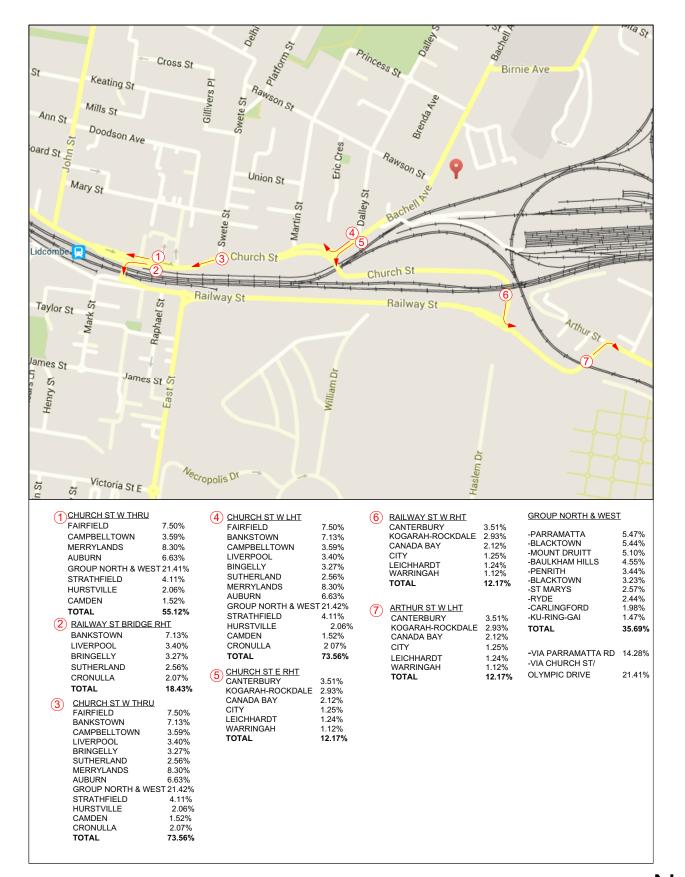


FIGURE 6B TRIP ASSIGNMENT EMPLOYEES JOURNEY FROM WORK

(3.6 continued.)

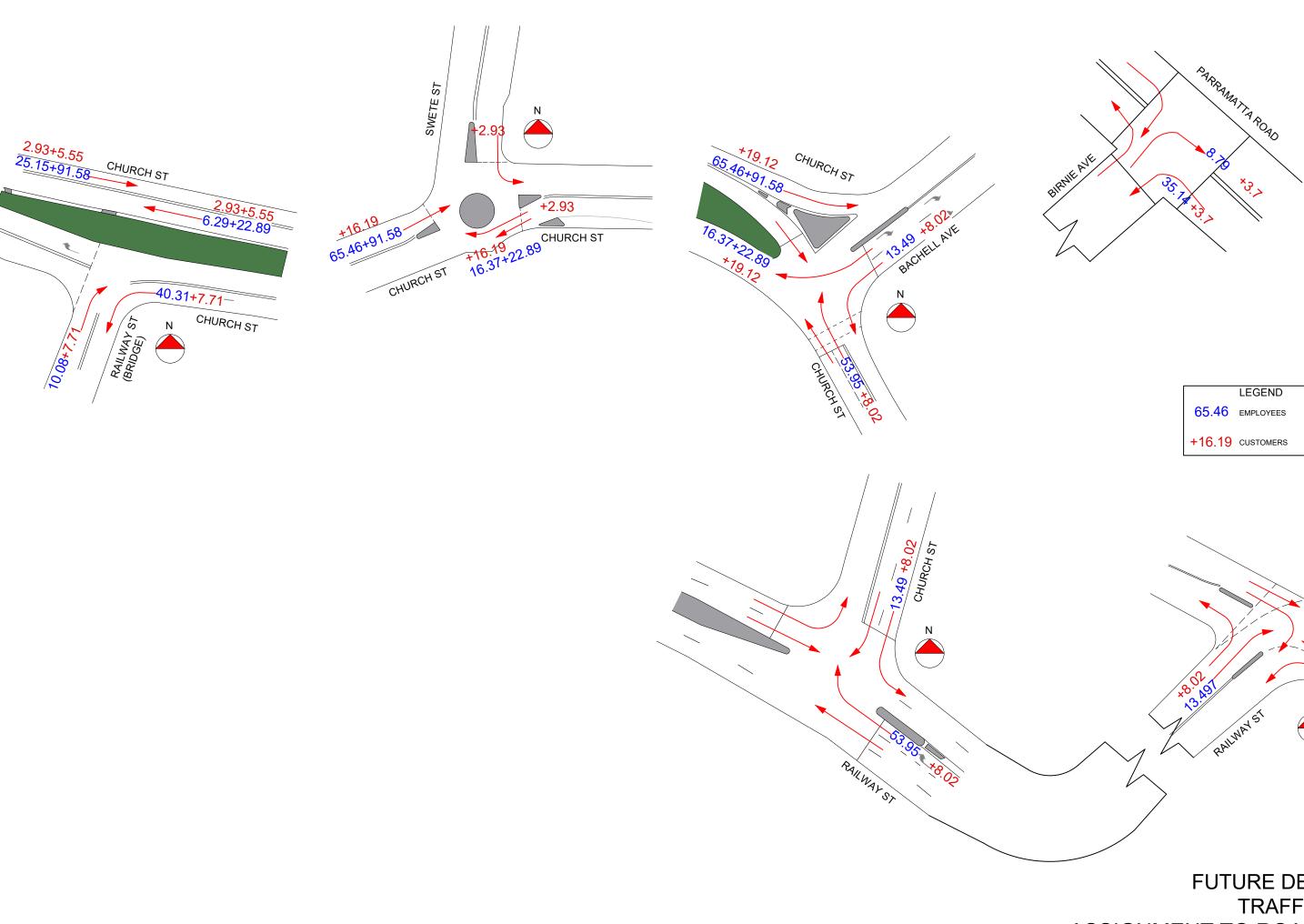
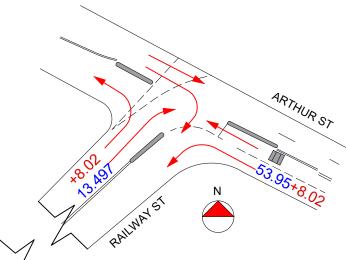
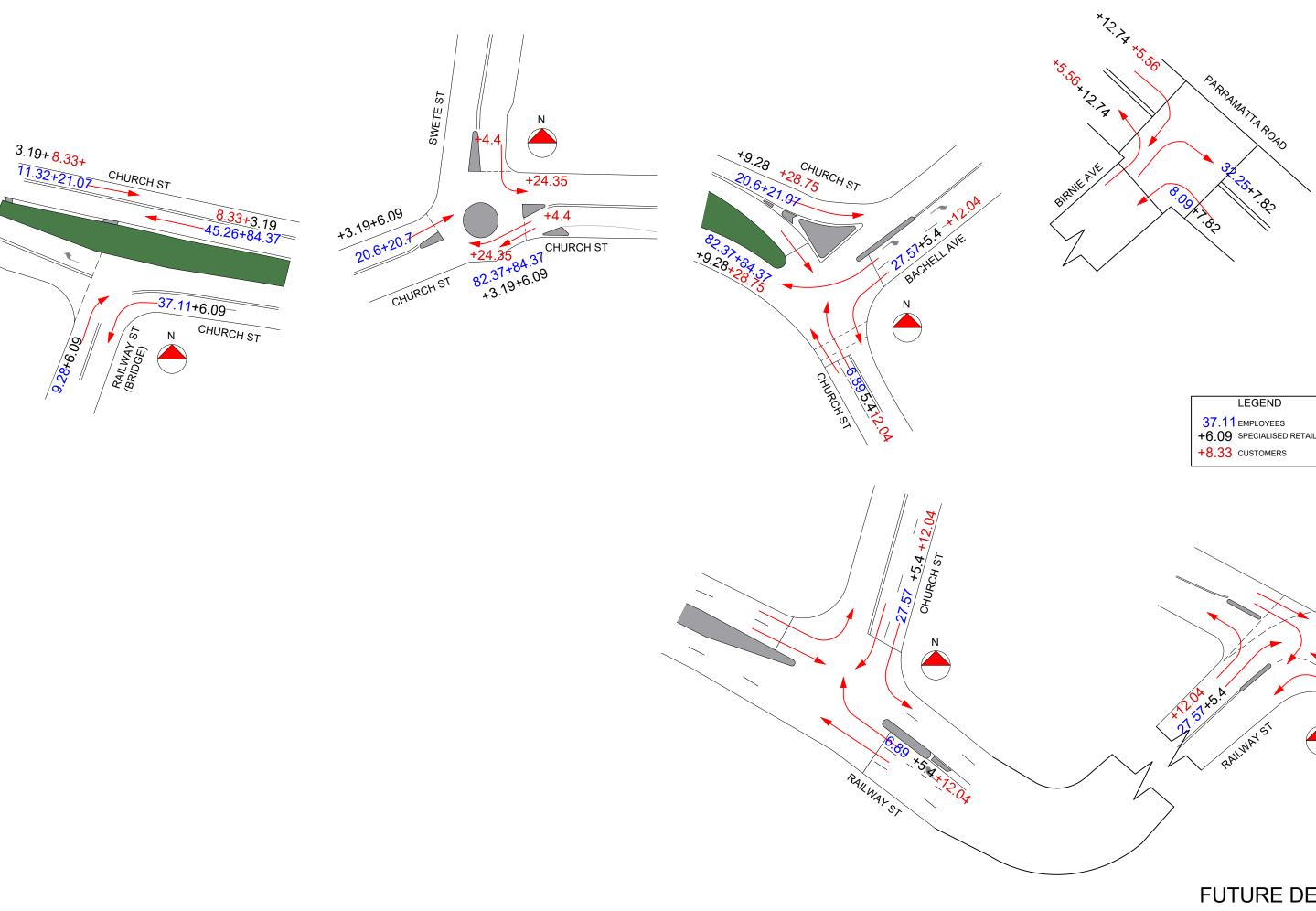
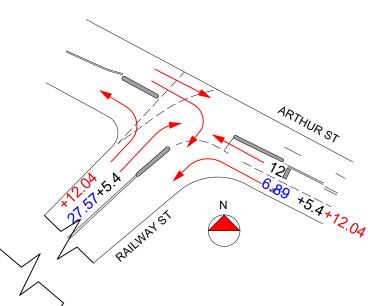

Origin SA3	Origin SA3 ID	No. of Vehicle Drivers	%
Merrylands - Guildford	12503	142.2	8.30%
Fairfield	12702	128.6	7.50%
Bankstown	11901	122.2	7.13%
Auburn	12501	113.6	6.63%
Parramatta	12504	93.8	5.47%
Blacktown	11601	93.2	5.44%
Mount Druitt	11603	87.4	5.10%
Baulkham Hills	11501	78	4.55%
Strathfield - Burwood - Ashfield	12003	70.4	4.11%
Campbelltown (NSW)	12302	61.6	3.59%
Canterbury	11902	60.2	3.51%
Penrith	12403	59	3.44%
Liverpool	12703	58.2	3.40%
Bringelly - Green Valley	12701	56	3.27%
Blacktown - North	11602	55.4	3.23%
Kogarah - Rockdale	11904	50.2	2.93%
St Marys	12405	44	2.57%
Sutherland - Menai - Heathcote	12802	43.8	2.56%
Ryde - Hunters Hill	12602	41.8	2.44%
Canada Bay	12001	36.4	2.12%
Cronulla - Miranda - Caringbah	12801	35.4	2.07%
Hurstville	11903	35.2	2.05%
Carlingford	12502	34	1.98%
Camden	12301	26	1.52%
Ku-ring-gai	12103	25.2	1.47%
Sydney Inner City	11703	21.4	1.25%
Leichhardt	12002	21.2	1.24%
Warringah	12203	19.2	1.12%
Total		1713.6	100.00%

Table 3.6 Journey to Work to Travel Zones: 1337 and 1338 for Employees


Note: Employees travelling from Origin SA3 to Travel Zones 1337 and 1338 with vehicle driver trips less than 1% of total trips have been omitted.

3.7 Future Intersection Performance


Development Traffic volumes are assigned to the road network for the different users, local customers, employees and customers to specialised retail as shown in Figures **7A** and **7B**. Development Volumes at the Site Driveway Intersection with Bachell Avenue and Rawson Street are shown in **Figure 7c**. The future AM and PM peak hour traffic volumes comprising development traffic plus existing traffic volumes at the 5 intersections being analysed are shown in **Figures 8A** and **8B** respectively. The Intersections have been analysed using computer program SIDRA 9.1.


FIGURE 7A FUTURE DEVELOPMENT TRAFFIC VOLUMES ASSIGNMENT TO ROAD NETWORK AM PEAK HOUR

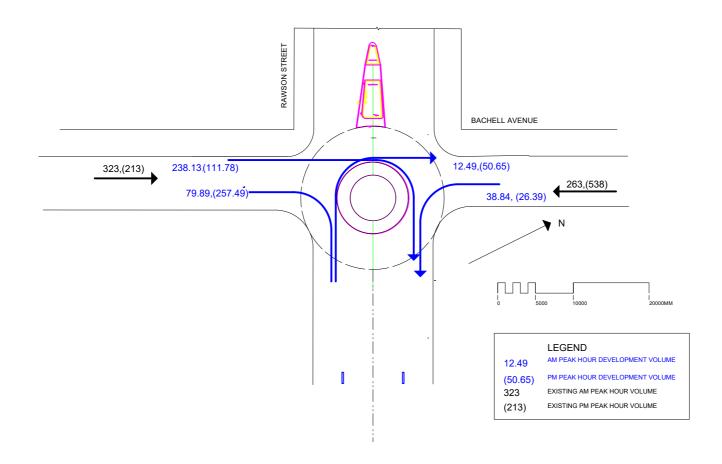
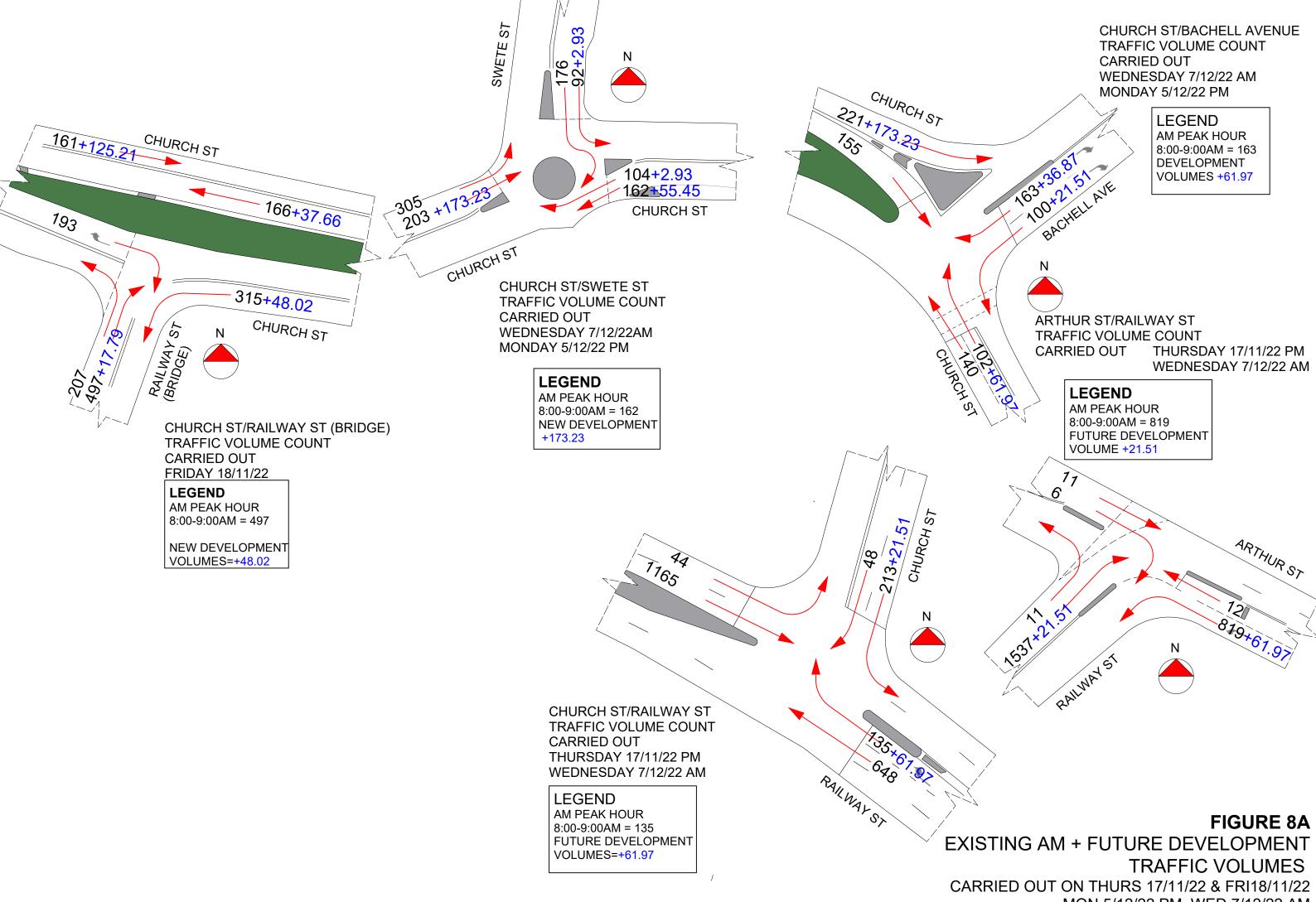


FIGURE 7B FUTURE DEVELOPMENT TRAFFIC VOLUMES ASSIGNMENT TO ROAD NETWORK



LEGEND
37.11 EMPLOYEES +6 09 SPECIALISED RETAIL
+8.33 CUSTOMERS

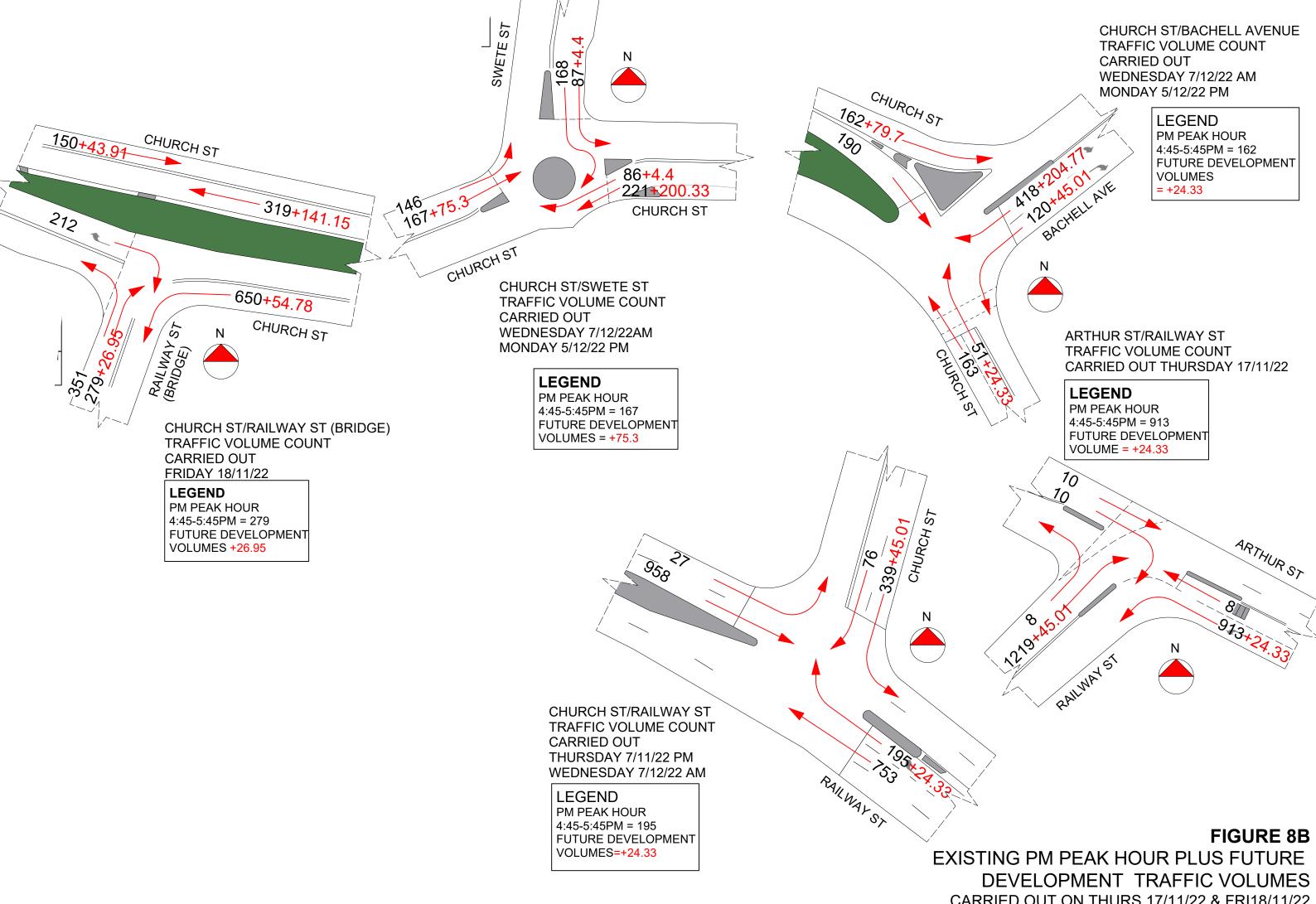


FIGURE 7C

FUTURE DEVELOPMENT PEAK HOUR VOLUMES AT SITE DRIVEWAY AND BACHELL AVENUE/RAWSON STREET INTERSECTION

MON 5/12/22 PM, WED 7/12/22 AM

CARRIED OUT ON THURS 17/11/22 & FRI18/11/22 MON 5/12/22 PM, WED 7/12/22 AM

(3.7 continued.)

	Performance											
No	Location	Sign/ Control	Peak Hour	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (Av)	95a% Back of Queue Length (Veh)	Critical Movement				
1	Church Street/ Railway Street	S	AM	F	1.186	219.9	12veh 86.6m	LHT from Railway St (west) 410.6 secs				
1	Church Street/ Railway Street	S	РМ	D	0.974	54.9	17.9veh 125m	RHT from Railway St (E) 93.7secs				
2	Arthur Street/ Railway Street	G	AM	A*	2.0	25.1	9.1veh 63.4m	RHT Arthur St (west) 1291.7secs				
2	Arthur Street/ Railway Street	G	PM	A*	0.698	8.0	2veh 13.7m	RHT Arthur St (west) 298.3secs				
3	Swete St/ Church St	R	AM	A	0.532	6.2	1.9veh 13.2m	RHT from Swete St 9.1secs				
3	Swete St/ Church St	R	PM	A	0.444	6.1	3.3veh 23.3m	RHT from Church St (east) 8.7 secs				
4	Church St/ Bachell Ave	S	AM	A	0.479	12.4	3.6 veh 25.3m	RHT Bachell Ave 21 secs				
4	Church St/ Bachell Ave	S	PM	В	0.754	19.9	4.7veh 32.8m	RHT Church St E Ave (west) 29.3secs				
5	Church Street/ Railway St Bridge	G	AM	A*	0.496	6.3	2.1veh 14.7m	RHT Church St (west) 15.9 secs				
5	Church Street/ Railway St Bridge	G	PM	A*	0.670	7.1	3.2veh 22.4m	RHT Church St (west) 22.7 secs				

Table 3.7a SIDRA Existing Plus Future Development Volumes Intersection Performance

NOTES: -

S = SIGNALS G = GIVEWAY R = ROUNDABOUT

Analysed using SIDRA 9.1

*Refer to Table 4.2 Level of Service Criteria in Section 2.4 of this report.

- 1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
- 2) Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
- 3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.
- The results in Intersection Summary show NA in the LoS summary however review of the movement summary demonstrates that priority movements operate with plenty of spare capacity.

(3.7 continued.)

The Level of Service at Church Street/ Railway Street is unchanged at F in the AM peak hour and D in the PM Peak Hour and there is no change as a result of development volumes. The existing Level of Service at this intersection is already unsatisfactory and is not as a result of this development.

All other intersections continue to operate with spare capacity in the AM and PM peak hours.

The development site intersection is operating with plenty of spare capacity as shown in Table 3.7b. The turning movements at this intersection has been checked for the probability of delay. This analysis work is included in **Appendix H.**

 Table 3.7b Site Access Driveway and Bachell Avenue Roundabout Intersection

No	Location	Sign/ Control	Peak Hour	Level of Service (LoS)	Degree of Saturatio n (DoS)	Average Delay (Av)	95a% Back of Queue Length (Veh)	Critical Movement
6	Bachell Avenue/Site Driveway	G	AM	A*	0.388	6.1	0.0veh 0.1m	RHT Rawson Streett) 11.9secs
6	Church Street/ Railway St Bridge	G	PM	A*	0.443	6.1	0.0veh 0.1m	Rawson Street10.4secs

3.8 Background Traffic Intersection Performance to 2032

Future background traffic growth for 10 years plus existing traffic volumes are modelled and summarised in Table 3.8. The intersections of Church Street/ Railway Street experience delays from Church Street (West) as a result of Background traffic growth which has been modelled on all approaches of 2 % per annum.

Background traffic growth to 2032 SIDRA results are included in **Appendix C** of this report.

A possible mitigation measure to increase capacity as a result of background traffic growth to the Church Street/ Railway Street Intersection is explained in detail in **Appendix G** of this report.

(3.8 continued.)

No	Location	Sign/ Control	Peak Hour	Level of Service (LoS)	Degree of Saturatio n (DoS)	Average Delay (Av)	95a% Back of Queue Length (Veh)	Critical Movement			
1	Church Street/ Railway Street	S	AM	F	1.413	442.5	23.5veh 164.8m	LHT from Railway St (west) 839.5 secs			
1	Church Street/ Railway Street	S	PM	F	1.169	177.2	9.6veh 67.1m	LHT from Church St (west) 377.2secs			
2	Arthur Street/ Railway Street	G	AM	A*	3.4	56.0	19.9vh 139.6m	THRU Arthur St (west) 4690secs			
2	Arthur Street/ Railway Street	G	PM	A*	2.28	32.0	19.9veh 133.2m	RHT Arthur St (west) 2594 secs			
3	Swete St/ Church St	R	AM	A	0.530	6.7	2.3veh 16.4m	RHT from Church St 8.6 secs			
3	Swete St/ Church St	R	PM	A	0.404	6.6	2.8veh 19.9m	RHT from Church St (east) 8.9 secs			
4	Church St/ Bachell Ave	S	AM	В	0.446	13.9	4.2 veh 29.8m	RHT Bachell Ave 23.7 secs			
4	Church St/ Bachell Ave	S	РМ	В	0.750	17.9	12.0veh 84m	RHT Bachell Ave (west) 23.3 secs			
5	Church Street/ Railway St Bridge	G	AM	A*	0.652	7.2	3.2veh 22.2m	RHT Church St (west) 20.1 secs			
5	Church Štreet/ Railway St Bridge	G	PM	A*	1.025	22.1	19.9veh 139.5m	RHT Church St (west) 127 secs			

NOTES: -

S = SIGNALS

```
G = GIVEWAY
```

R = ROUNDABOUT

Analysed using SIDRA 9.1

*Refer to **Table 4.2** Level of Service Criteria in **Section 2.4** of this report.

- 1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
- 2) Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
- 3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.
- The results in Intersection Summary show NA in the LoS summary however review of the movement summary demonstrates that priority movements operate with plenty of spare capacity.

3.9 Network Model

The intersections included in a SIDRA networked model are the intersections of Bachell Avenue/Church Street, Church Street/Swete Street and Martin Street/Church Street. Please note that turning volumes for Martin Street have been estimated using the turning volumes at Sweet Street for analysis purposes. The volumes in Martin Street would probably be lower as this route would not be used for north-south trips (i.e. rat running) based upon the number of residential dwellings within Martin Street and it only provides a connection to Rawson Street which runs east west. The updated Traffic and Parking Impact Assessment has been revised to network those identified intersections.

The summary of the analysis is provided in the following tables. Full SIDRA results are included in **Appendix K** of this report.

No	Location	Control	Peak Hour	Level of Service (Los)	Degree of Saturation (DoS)	Average Delay (Av)	95% Back of Queue Length veh	Critical Movement / queue length
3	Swete St/ Church St	R	AM	A	0.455	6.4	0.7 veh 4.7m	RHT from Church St (east) 7.9 secs
3	Swete St/ Church St	R	PM	A	0.344	6.4	0.9 veh 6.4m	RHT from Church St (east) 8.7 secs
3a	Martin	ſ	AM	А	0.442	7.0	0.8 veh and 5.3m	RHT from Martin St 10 secs
3b	St/Church ST	R	РМ	A	0.344	7.0	0.9 veh 6.3m	RHT from Martin St 9.8 secs
4	Church St/ Bachell Ave	S	AM	В	0.626	13.3	1.9veh 13.1m	RHT Bachell Ave 20.7 secs
4	Church St/ Bachell Ave	S	PM	В	0.658	16.6	3.1veh 21.4m	THRU Church St (west) 23.2 secs

Table 3.9.1 Existing Network Model

NOTES:-

S = SIGNALS G = GIVEWAY R = ROUNDABOUT

- 1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
- 2) Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
- 3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.
- The results in Intersection Summary show NA in the LoS summary however review of the movement summary demonstrates that priority movements operate with plenty of spare capacity.
- Approach refers to the approach direction to the intersection. For each Arthur Street East Approach is the eastern side of Arthur Street to the intersection of Railway Street.

(3.9 Continued)

Table 5.5.2 Existing plus Dackground Traine Growth-2052 Network Model									
No	Location	Control	Peak Hour	Level of Service (Los)	Degree of Saturation (DoS)	Average Delay (Av)	95% Back of Queue Length veh	Critical Movement / queue length	
3	Swete St/ Church St	R	AM	А	0.455	6.4	0.8 veh 5.4m	RHT from Church St (east) 8.7 secs	
3	Swete St/ Church St	R	PM	А	0.344	6.4	0.9 veh 6.4m	RHT from Church St (east) 8.7 secs	
3a	Martin	R	AM	А	0.442	7.0	0.8 veh and 5.3m	RHT from Martin St 10 secs	
3b	St/Church ST	ĸ	РМ	A	0.344	7.0	0.9 veh 6.3m	RHT from Martin St 9.8 secs	
4	Church St/ Bachell Ave	S	AM	В	0.626	13.3	1.9veh 13.9m	RHT Bachell Ave 20.7 secs	
4	Church St/ Bachell Ave	S	РМ	В	0.658	16.6	3.1veh 21.4m	THRU Church St (west) 23.2 secs	

Table 3.9.2 Existing plus Background Traffic Growth-2032 Network Model

NOTES:-S = SIGNALS G = GIVEWAY R = ROUNDABOUT

- 1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
- 2) Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
- 3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.
 - The results in Intersection Summary show NA in the LoS summary however review of the movement summary demonstrates that priority movements operate with plenty of spare capacity.
 - Approach refers to the approach direction to the intersection. For each Arthur Street East Approach is the eastern side of Arthur Street to the intersection of Railway Street.

There is very little change over 10 years to the networked intersections. Small changes in queue length were recorded in the Swete Street/Church Street Intersection.

(3.9 Continued)

The future networked intersections include the intersection of the proposed driveway roundabout. The site access is operating with plenty of spare capacity under networked conditions. There is a change in average delay form the intersection of Bachell Avenue and Church Street in the PM Peak Hour of 5.3 seconds.

No	Location	Control	Peak Hour	Level of Service (Los)	Degree of Saturation (DoS)	Average Delay (Av)	95% Back of Queue Length veh	Critical Movement / queue length
3	Swete St/ Church St	R	AM	A	0.563	6.3	0.8 veh 5.8m	RHT from Swete St(east) 9.3s
3	Swete St/ Church St	R	PM	A	0.471	6.2	1.5 veh 10.3m	RHT from Church St (east) 8.8 secs
3a	Martin	R	AM	A	0.584	7.3	0.9 veh and 6.6m	RHT from Martin St 11.5 secs
3b	St/Church ST	ĸ	РМ	A	0.489	7.0	0.7 veh 4.9m	RHT from Martin St 10 secs
4	Church St/ Bachell Ave	S	AM	В	0.504	12.5	2.3veh 16.4m	RHT Bachell Ave 21.1 secs
4*	Church St/ Bachell Ave	S	PM	С	0.810	21.9	3.9veh 27.4m	THRU Church St (west) 31.3 secs
5	Site Access	S	AM	A	0.403	6.5	0eh 0.1ps m	RHT Rawson St 11.6secs
5	Site Access	S	РМ	A	0.471	6.9	1.2veh 8.1mmm	RHT Site Access 12.3s

Table 3.9.3 Existing Plus Future Development Traffic Network Model

NOTES:-S = SIGNALS G = GIVEWAY R = ROUNDABOUT

- 1) Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.
- 2) Average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.
- 3) Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.
 - The results in Intersection Summary show NA in the LoS summary however review of the movement summary demonstrates that priority movements operate with plenty of spare capacity.
 - Approach refers to the approach direction to the intersection. For each Arthur Street East Approach is the eastern side of Arthur Street to the intersection of Railway Street.

3.10 Delivery / Service Vehicles

The following gross floor area will facilitate a requirement for delivery based on a gross floor area of **25915 sqm**.

The provision for delivery and service vehicles in *Table 2* in *Part G3 Traffic Parking, Transport and Access* in *Cumberland DCP* is the same as *Table 1* in the *RMS Guide to Traffic Generating Developments*. The Delivery Loading requirements based on *Table 2 Part G3* and *Table 1* in *RMS Guide to Traffic Generating Developments* are listed in **Table 3.8**. A Loading Dock Management Plan **Report No 04/23** is provided with details of the access, security and management of all loading spaces within the development.

	Use	Area m2 GFA	Area m2 GFA	Rate - CDCP	Rate PART G3 - CDCP- 2021	Total	RMS-Rate	RMS	Total
Note 1*	Specialised Retail	3432	3432	Not listed		1.20			1.20
Note 2*	Light Industries	1813	1813	1/800 sqm	0.00125	2.27	1/800 sqm	0.00125	2.27
Note 2*	High Technology 2	7112	7112	1/800 sqm	0.00125	8.89	1/800 sqm	0.00125	8.89
	Food and Drink	1167		1/400 sqm up			1/400 sqm up	0.0025 x	
	Food and Drink Restaurant	1359	2685	to 2000sqm, plus	0.0025	5.86	to 2000sqm, plus 1/1000sqm	2000+0.001 x 855	5.86
	Café	159		1/1000sqm			· ·		
	Gym	863	863	1/2000 sqm	0.0005	0.44	1/2000 sqm	0.0005	0.44
	Health Services	2535	2535	1/2000 sqm	0.0005	1.35	1/2000 sqm	0.0005	1.35
	Office Premises	6041	6041	1/4000 up to 8000sqm	0.00025	1.51	1/4000 < 20,000sqm	0.00025	1.51
Note 4*	Self Storage	392	392	Not listed	0.0005	0.20	1/2000 sqm	0.0005	0.20
	Centre Base Childcare Facility	711	711	1/2000 sqm	0.0005	0.36	1/2000 sqm	0.0005	0.36
Note 3*	Dog Daycare	303	303	Not listed		0.07	1/4000 sqm 0.00025	0.00025	0.07
	Care Taker Residence	28	28	1/Dwelling	-	0.00			0.00
Note 5*	Total		25915			22.14			22.14
	Total excluding								
	Light Industry Tenancies					19.87			19.87
	Rounded Up					20			20
	Note 1*	•			•		ata at a Specialise rm on Parking Utli		

Table 3.10a Delivery Loading Requirements

 Analysis of Loading Facilities for Specialised Retail.

 Note 2*
 Light and Hight Technology units have parking within tenancy space on Ground Floor (11) and Level 2 (13)

Note 3* RMS Rate for commercial applied to Dog Daycare

	This use does not have an attributable gross floor area as defined by the Cumberland LEP 2021,
Note 4*	This use does not have an autourable gross noor area as defined by the Cumbenand LEF 2021,
Note 4	

however is included as it generates parking demand and trip generation.

Note 5^* Total GFA includes lobbies and toilets but excludes self storage = 28,075m².

(3.10 continued.)

PROVISION	HRV	MRV	SRV	B99	Ambulance	Total
B2				1		1
B1				2		3
			6	5	1*	11*
LG				5	1	11
GROUND		4				5
LEVEL 2			1			1
Total		4	7	8	1	20*

Table 3.10b Loading Bay Provision

*Includes ambulance bay used for recreation facility/gym and health services.

A total of 4/MRV's, 7/SRV's and 8/B99 vehicle loading bays have been provided plus a further 24 bays suitable for B99 or SRV vehicles have been provided in the Workspaces (Light Industry) units on the ground floor and level 2. Hence the 19 loading bays plus a potential further 24 in the Light Industry units are considered adequate for this development.

These 24 spaces are excluded in the car parking provision, and these spaces can be used by small rigid vehicles for loading for individual tenancies.

4.0 GEOMETRIC DESIGN OF CAR PARKS AND RAMPS

4.1 General

Access for MRV trucks is provided from the northern end of the site from Bachell Ave. MRV access is also required to service the garbage room at Level 2 and access is from the southern entrance in Bachell Avenue. SRV access is provided from the southern entrance for SRV and B99 vehicles. There are SRV and B99 Loading Bays on the Lower Ground Floor. There is 1 loading bay for a B99 vehicle on Basement 2 and 3 loading bays for a B99 vehicle on Basement 1.

If a MRV (medium rigid vehicle) does travel up to Level 2 the ramps are designed to accommodate this vehicle, should it enter Level 2 accidentally. Swept paths showing MRV vehicles on the ramp to Level 2 checked using Autoturn Pro software as shown on Drawing Sheet No **1194-1-22-19** in **Appendix F**.

4.2 Geometric Design of Car Parks

The minimum aisle width on parking levels B2, B1 and Lover Ground Floor is 5.8 metres, and the parking bays are 2.6 wide by 5.4 metres long. The parking bay widths are clear of columns. The external face of the columns are set back 750mm from the end of the parking bays. The car park layout complies with User Class 3 in *Table 1.1* and *Figure 2.2* in *AS/NZS 2890.1*.

4.3 Swept Path Analysis

The swept path figures are included in **Appendix F**.

The swept paths for a B99 vehicle to enter and exit from Basements B1 and B2 via the lower ground floor to Bachell Avenue are shown in Drawing No1194-1-22-02, 1194-1-22-05 and 1194-1-22-06.

The swept paths of a SRV vehicle to enter and exit from the Lower Ground Floor are shown on drawing **1194-1-22-08 and 1194-1-22-09**.

The swept paths of a MRV vehicle entering and exiting from the two MRV loading bays near the garbage room at Ground Level are shown on drawing **1194-1-22-14**, and **1194-1-22-16**.

The swept paths of a MRV vehicle negotiating the ramps for entry to and exit from Level 2 are shown on drawing No **1194-1-22-16**. The swept paths of a MRV vehicle entering and exiting from the unloading area near the garbage room on Level 2 are shown in **1194-1-22-20**.

The swept paths of a MRV vehicle entering and exiting from the Ground Floor Level to Bachell Ave at the northern end of the site are shown on Drawing **1194-1-22-Sheet 16.**

4.4 Ramp Gradients

The ramp gradient of 1 in 5 over 13.5 metres with 1 in 8 transitions 2 metres long at the top and bottom of the ramp are shown on the architects' drawings DA102, DA101 and DA100 for the ramps from Lower Ground Floor to Basement 1 and from Basement 1 to Basement 2. The gradients comply with *AS/NZS 2890.1* for B99 vehicle access.

The ramp gradients for the ramps from Bachell Avenue to the unloading area on Level 2 are shown in **1194-1-22-19** (in **appendix F**) and comply with maximum gradient of 15.4% and provide transitions from grade changes of 6.25% over 7 metres as required for MRV vehicles in *Table 3.2* and *3.3* in *AS 2890.2*.

5.0 SUMMARY

- The report has been prepared in support of a development application for business development.
- The proposed business development based upon architects' plans comprises specialised retail, light industry, warehousing, high technology, dog daycare, office, food and drink, health services, childcare and gymnasium totaling **25915m**². The total Site GFA including Lobbies and toilets is 25,078m².
- Peak hour traffic counts were conducted at 5 intersections in November and December 2022 on approach and departure routes from the proposed site. SIDRA analysis showed that the Church Street/Railway Street intersection was operating at Level of Service F in the AM and D in the PM peak hours.
- The other 4 intersections were providing satisfactory performance with spare capacity.
- The car parking requirement to comply with the *Cumberland Council DCP 2021 Part G3* is approximately **542 spaces**. The architects' plans show **496** car parking spaces including 2 car share spaces and 1 ride share space plus **12** motorbike spaces and **82** bicycle parking spaces. In addition to the car parking provided there are 24 light industry loading spaces. If there are added into the total supply this brings the total to **520** car parking spaces. Each car share space is the equivalent of 10 car parking spaces plus the ride share space.
- Vehicular access is proposed to and from Bachell Avenue at two locations.
- The peak traffic volume generated by the development was modelled for a higher number of vehicles. There has been a reduction in traffic generated by the development of 26.7 vehicles in the AM Peak Hour and 23.2 vehicles in the PM Peak Hour. The revised traffic generation is **343** vehicles in the AM Peak hour and **423** vehicles in the PM Peak Hour.
- A network model has been provided to intersections in closest proximity and is contained in **Appendix K** of this report. The network is operating with spare capacity in the morning and evening peak hours.
- Additional analysis for car parking demand has been based on use traffic generation profiles which shows that the peak car parking demand for each use is offset and that the peak weekday demand occurs at 8:00am with 341 spaces.
- Detailed trip distribution and assignment to the road network is included in the Supplementary Technical **Report No 15-23** included in **Appendix I** of this report.

(5.0 continued.)

- The volumes have been assigned to the Road Network and SIDRA analysis has been carried out. The Railway Street/Church Street is currently operating at Level of Service F in the AM and D in the PM peak hours. Traffic volumes generated by this development do not change the Level of Service and only increase the average delay in the AM peak hour by 2 seconds. There is no change to the Level of Service at the other intersections in the future as they are operating within plenty of space capacity.
- Based upon *RMS Guidelines* and *Cumberland Council DCP 2021 Part G3*, 22 spaces are required for delivery/service vehicles. 20 spaces have been provided and there are a further 25 bays suitable for B99 and SRV vehicles in the Light Industry Units.
- A Loading Management Plan has been prepared as **Report No 04/23**.
- A Green Travel Plan **Report No 14/23** has been provided to increase travel by other modes such as walking and cycling and to reduce car travel dependency.
- This assessment has found that all intersections within the vicinity of the site operate satisfactorily under existing and future conditions and under full development, with the exception of the Church Street/ Railway Street intersection that is already operating at LoS F in the AM peak hour.
- Background Traffic Growth to 2032 shows that capacity constraints continue at the intersection of Church Street and Railway Street.
- The intersection of Church St/Railway Street Bridge located 890 metres to the west of the intersection of Church Street/Railway Street operates at Level of Service A in both peak hours in the future and is an alternative route for drivers travelling eastbound. As the intersection of Church Street/Railway Street reaches capacity, driver behaviour would indicate that the fastest route without delays will be sought.
- A mitigation option to improve the existing operational performance at the intersection of Church Street/Railway Street Intersection is investigated in Appendix G and would change the operational Level of Service to C in the AM and A in the PM peak hours.

APPENDICES

APPENDIX A

ACCESSIBL B99

40 10 10 10 10 10 11 11 11 11 1	
	the LU
	THE HUB @ LIDCOMBE DRAWING: BASEMENT 2 FLOOR PLAN
	ADDRESS: 2 BACHELL AVENUE LIDCOMBE CLIENT: PACIFIC PLANNING
	STATUS: RFI RESPONSE
CAR PARKING : 187 BLE CAR PARKING : 2 99 LOADING BAYS : 1 MOTORBIKES : 10	JOB No. ISSUE DATE: 18107.3 18.09.2024 DWG. NO: SCALE: 1250 AT A1 D
BICYCLE SPACES : 5	DA 100 1:500 AT A3 B

40 91 92 93 94 PLANT PLANT PLANT	
	PROJECT: THE HUB @ LIDCOMBE DRAWING: BASEMENT 1 FLOOR PLAN ADDRESS: 2 BACHELL AVENUE LIDCOMBE CLIENT: PACIFIC PLANNING
CAR PARKING : 180 BLE CAR PARKING : 2 99 LOADING BAYS : 2 MOTORBIKES : 5 BICYCLE SPACES : 32	STATUS: RFI RESPONSE JOB NO. ISSUE DATE: 18107.3 18.09.2024 DWG. NO: SCALE: IL250 AT A1 B

Suite 203 level 2 34 Charles Street Parramatta NSW 2150 p 02 9098 8921 e info@twoform.com.au twoform.com.au

RECREATION FACILITY (INDOOR) GYM 596 m²

JOB	No.	
181	07	3

DWG. NO:

DA 102

SCALE: 1:250 AT A1 1:500 AT A3

18.09.2024 B

CAR FARMING .	109
LE CAR PARKING :	7
V LOADING BAYS :	6
9 LOADING BAYS :	5
E SHARE SPACE :	1
SHARE SPACES :	2
BICYCLE SPACES :	45

PROJECT: THE HUB @ LIDCON	IBE	C
DRAWING: LEVEL 2 FLOOR PLAN		
ADDRESS: 2 BACHELL AVENUE L	IDCOMBE	
CLIENT: PACIFIC PLANNING		
STATUS: RFI RESPONSE		
јов №. 18107.3		ISSUE DATE: 18.09.2024
DWG. NO:	SCALE:	REV:

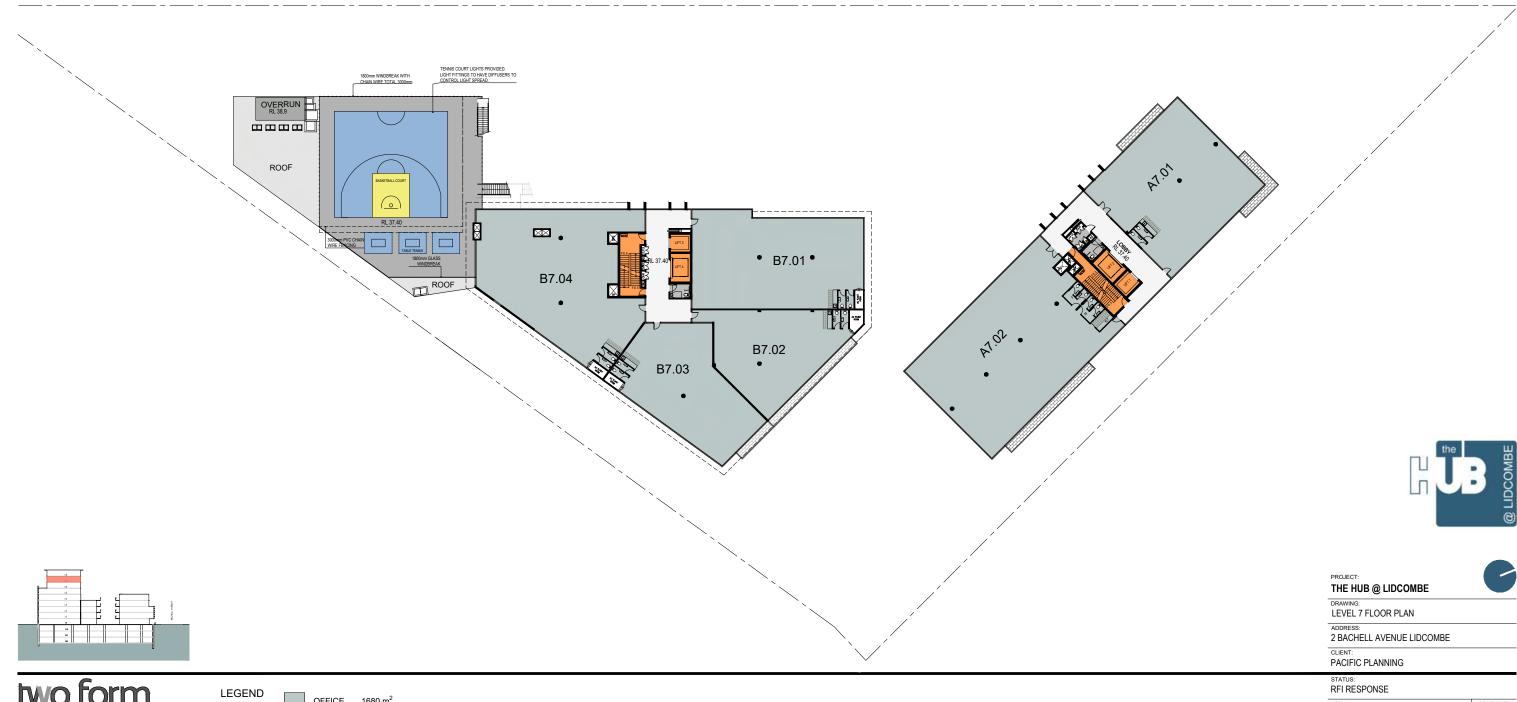
PROJECT: THE HUB @ LIDCOMBE	C
DRAWING: LEVEL 3 FLOOR PLAN	
ADDRESS: 2 BACHELL AVENUE LIDCOMBE	
CLIENT: PACIFIC PLANNING	
STATUS: RFI RESPONSE	
JOB No. 18107.3	ISSUE DATE: 18.09.2024

ARCHITECTURE + INTERIOR DESIGN Suite 203 level 2 34 Charles Street Parramatta NSW 2150 p 02 9098 8921 e info@twoform.com.au twoform.com.au

HIGH TECHNOLOGY INDUSTRY 3275 m²

PROJECT: THE HUB @ LIDCON	1BE	C
DRAWING: LEVEL 4 FLOOR PLAN		
ADDRESS: 2 BACHELL AVENUE L	IDCOMBE	
CLIENT: PACIFIC PLANNING		
STATUS: RFI RESPONSE		
JOB No. 18107.3		ISSUE DATE: 18.09.2024
dwg. no: DA 107	SCALE: 1:250 AT A1 1:500 AT A3	B B

PROJECT: THE HUB @ LIDCON	IBE	C
DRAWING: LEVEL 5 FLOOR PLAN		
ADDRESS: 2 BACHELL AVENUE L	IDCOMBE	
CLIENT: PACIFIC PLANNING		
STATUS: RFI RESPONSE		
JOB No. 18107.3		ISSUE DATE: 18.09.2024
dwg. no: DA 108	SCALE: 1:250 AT A1 1:500 AT A3	B B


ARCHITECTURE + INTERIOR DESIGN Suite 203 level 2 34 Charles Street Parramatta NSW 2150 p 02 9098 8921 e info@twoform.com.au twoform.com.au

OFFICE 2191 m²

PROJECT: THE HUB @ LIDCON	IBE	6
DRAWING: LEVEL 6 FLOOR PLAN		
ADDRESS: 2 BACHELL AVENUE L	DCOMBE	
CLIENT: PACIFIC PLANNING		
STATUS: RFI RESPONSE		
JOB No. 18107.3		ISSUE DATE: 18.09.2024
DWG. NO:	SCALE:	REV:

DWG. NO: DA 109

SCALE: 1:250 AT A1 1:500 AT A3

ARCHITECTURE + INTERIOR DESIGN Suite 203 level 2 34 Charles Street Parramatta NSW 2150 p 02 9098 8921 e info@twoform.com.au **twoform.com.au**

OFFICE 1680 m²

PROJECT: THE HUB @ LIDCON	1BE	C
DRAWING: LEVEL 7 FLOOR PLAN		
ADDRESS: 2 BACHELL AVENUE L	IDCOMBE	
CLIENT: PACIFIC PLANNING		
STATUS: RFI RESPONSE		
JOB No. 18107.3		ISSUE DATE: 18.09.2024
DWG. NO: DA 110	SCALE: 1:250 AT A1 1:500 AT A3	REV: B
	1.300 AT A3	

Suite 203 level 2 34 Charles Street Parramatta NSW 2150 p 02 9098 8921 e info@twoform.com.au twoform.com.au

DOG DAYCARE 303 m²

PROJECT: THE HUB @ LIDCON	1BE	C
DRAWING: LEVEL 8 FLOOR PLAN		
ADDRESS: 2 BACHELL AVENUE L	IDCOMBE	
CLIENT: PACIFIC PLANNING		
STATUS: RFI RESPONSE		
JOB No. 18107.3		ISSUE DATE: 18.09.2024
dwg. no: DA 111	SCALE: 1:250 AT A1 1:500 AT A3	B B

APPENDIX B

INTERSECTION: CHURCH ST/RAILWAY ST

TRAFFIC VOLUME COUNT

DAY: DATE: WEATHER. OBSERVER. 07/12/22 Fine MC

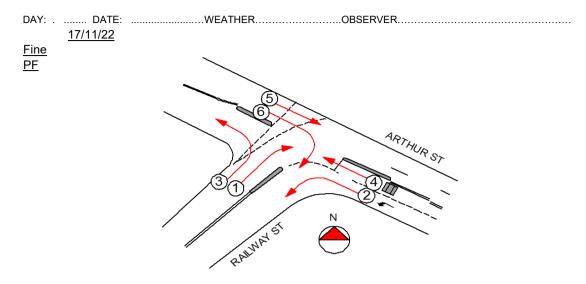
Time		MOVEMENT NUMBER										
AM	1	QV	2	QV	3	QV	4	QV	5	QV	6	QV
8:00AM TO												
8.15AM	244	10	152	3	12		27	2	49		8	8
8:15AM TO												
8:30AM	265	14	152	5	11		25	4	47		11	7
8:30AM TO												
8:45AM	321	11	149	6	11		38	3	65		15	8
8:45AM TO												
9:00AM	335	12	195	5	10		45	3	52		14	5
	QV = Maxii	num nui	mber of que	ued ve	hicles		QV volumes ch	ecked 2	0/5/21			

	1	QV	w	QV	3	QV	4	QV	5	QV	6	QV
8:00-9:00am	1165	47	648	19	44	0	135	12	213	0	48	28

INTERSECTION: CHURCH ST/RAILWAY ST

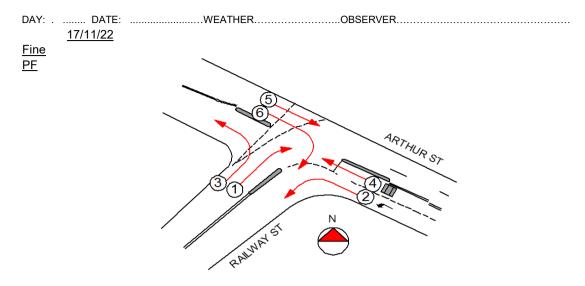
TRAFFIC VOLUME COUNT

Time		MOVEMENT NUMBER											
AM	1	QV	2	QV	3	QV	4	QV	5	QV	6	QV	
4.00PM TO													
4.15PM	228	5	254	12	9	3	47	3	38	10	26	5	
4.15PM TO													
4.30PM	228	6	198	9	4	2	31	3	60	6	17	7	
4.30PM TO													
4.45PM	211	14	160	9	5	1	33	2	71	5	15	5	
4.45PM TO													
5.00PM	226	10	165	8	3	0	41	4	76	8	16	7	
5.00PM TO													
5.15PM	206	10	176	10	9	0	26	5	95	11	17	6	
5.15PM TO													
5.30PM	254	9	195	11	5	0	35	3	81	5	20	10	
5.30PM TO													
5.45PM	263	12	197	10	7	0	75	4	88	8	22	11	
5.45PM TO													
6.00PM	235	8	185	8	6	0	59	6	75	10	17	5	
				•						•		1	


QV = Maximum number of queued vehicles

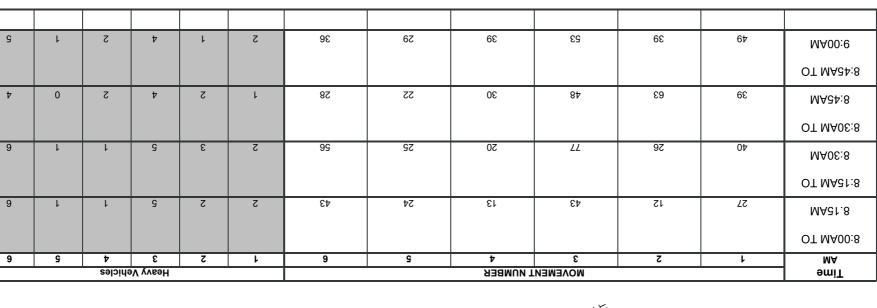
QV volumes checked 20/5/21

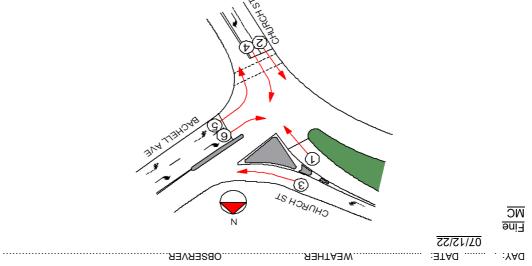
	1	QV	w	QV	3	QV	4	QV	5	QV	6	QV
4:00-5:00pm	893	35	777	38	21	6	152	12	245	29	74	24
4:15-5:15pm	871	40	699	36	21	3	131	14	302	30	65	25
4:30-5:30pm	897	43	696	38	22	1	135	14	323	29	68	28
4:45-5:45pm	949	41	733	39	24	0	177	16	340	32	75	34
5:00-6:00pm	958	39	753	39	27	0	195	18	339	34	76	32


INTERSECTION: ARTHUR ST/RAILWAY ST

TRAFFIC VOLUME COUNT

Time	MOVEMENT NUMBER												
AM	1	2	3	4	5	6							
7:00AM TO													
7.15AM	278	145	4	4	3	1							
7:15AM TO													
7.30AM	310	132	5	4	1	0							
7:30AM TO													
7.45AM	411	159	2	3	2	0							
7:45AM TO													
8.00AM	402	191	4	5	2	1							
8:00AM TO													
8.15AM	395	162	4	2	3	2							
8:15AM TO													
8:30AM	315	171	2	3	4	2							
8:30AM TO													
8:45AM	452	210	2	4	2	0							
8:45AM TO													
9:00AM	375	276	3	3	2	2							
	1	2	3	4	5	6							
7-8:00am	1401	627	15	16	8	2							
7:15-8:15am	1518	644	15	14	8	3							
7:30-8:30am	1523	683	12	13	11	5							
7:45-8:45am	1564	734	12	14	11	5							
8:00-9:00am	1537	819	11	12	11	6							

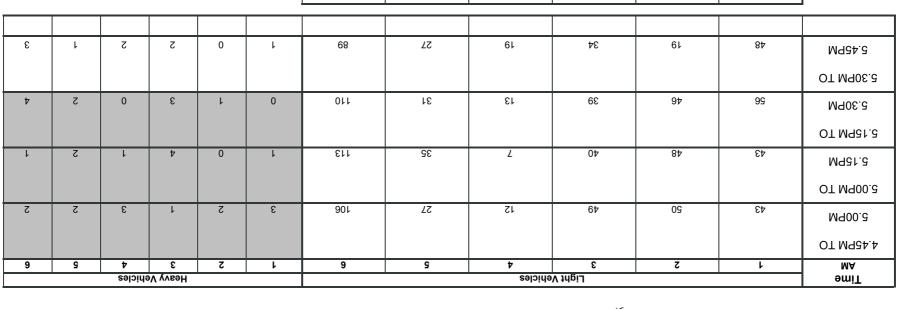

INTERSECTION: ARTHUR ST/RAILWAY ST

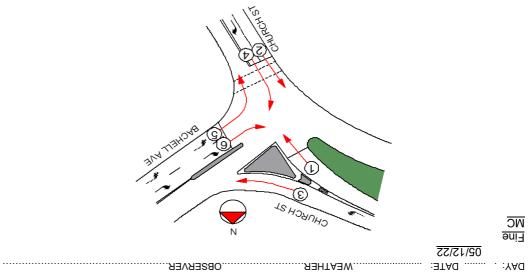


Time	MOVEMENT NUMBER											
AM	1	2	3	4	5	6						
4.00PM TO												
4.15PM	272	304	3	3	0	1						
4.15PM TO												
4.30PM	285	225	2	2	2	1						
4.30PM TO												
4.45PM	284	241	1	2	3	2						
4.45PM TO												
5.00PM	299	199	2	1	4	2						
5.00PM TO												
5.15PM	287	210	2	2	2	1						
5.15PM TO												
5.30PM	298	251	3	3	3	4						
5.30PM TO												
5.45PM	335	253	1	2	1	3						
5.45PM TO												
6.00PM	305	241	1	2	1	1						
Г	1	2	3	4	5	6						
4:00-5:00pm	1140	969	8	8	9	6						
4:15-5:15pm	1155	875	7	7	11	6						
4:30-5:30pm	1168	901	8	8	12	9						
4:45-5:45pm	1219	913	8	8	10	10						
5:00-6:00pm	1225	955	7	9	7	9						

INTERSECTION: CHURCH ST/BACHELL AVE

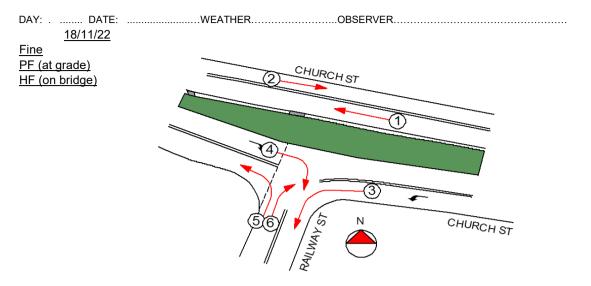
TRAFFIC VOLUME COUNT




ms00:9-00:8

INTERSECTION: CHURCH ST/BACHELL AVE

TRAFFIC VOLUME COUNT



mq24:2-24:4

JIN TAILOR GO	CHINKCH 21		c J
Овзеклек	ЯЭНТАЭМ	:9740 05/12/22	. :Y

INTERSECTION: CHURCH ST/RAILWAY ST BRIDGE

Time	4 3 1 2 MOVEMENT NUMBER											
AM	1	2	3	4	5	6						
7:00AM TO												
7.15AM	33	18	37	56	42	88						
7:15AM TO												
7.30AM	41	19	42	37	49	77						
7:30AM TO												
7.45AM	39	35	65	50	51	131						
7:45AM TO												
8.00AM	42	33	76	52	55	129						
8:00AM TO												
8.15AM	46	30	87	60	61	113						
8:15AM TO												
8:30AM	32	33	52	43	49	118						
8:30AM TO												
8:45AM	35	51	91	66	47	145						
8:45AM TO												
9:00AM	53	47	85	68	50	121						
Г	1	2	3	4	5	6						
7-8:00am	155	105	220	195	197	425						
7:15-8:15am	168	117	270	199	216	450						
7:30-8:30am	159	131	280	205	216	491						
7:45-8:45am	155	147	306	221	212	505						
8:00-9:00am	166	161	315	237	207	497						

INTERSECTION: CHURCH ST/RAILWAY ST BRIDGE

Time								
AM	1	2	3	4	5	6		
4.00PM TO								
4.15PM	68	31	111	64	107	74		
4.15PM TO								
4.30PM	62	30	128	53	87	73		
4.30PM TO								
4.45PM	59	29	131	51	85	72		
4.45PM TO								
5.00PM	70	33	166	59	90	73		
5.00PM TO								
5.15PM	88	36	148	47	88	100		
5.15PM TO								
5.30PM	84	42	165	51	78	66		
5.30PM TO								
5.45PM	77	39	171	47	95	40		
5.45PM TO								
6.00PM	69	40	120	52	97	77		
Γ	1	2	3	4	5	6		
4:00-5:00pm	259	123	536	227	369	292		
4:15-5:15pm	279	128	573	210	350	318		
4:30-5:30pm	301	140	610	208	341	311		
4:45-5:45pm	319	150	650	204	351	279		
5:00-6:00pm	318	157	604	197	358	283		

INTERSECTION: CHURCH ST/SWETE ST

DAY:	DATE:	OBSERVERWEATHER
	<u>07/12/22</u>	1 11 1
<u>Fine</u>		
HP		
		3
		CHURCH ST
		CHURCHST
		CHURCH

Time			MOVEMEN	T NUMBER		
AM	1	2	3	4	5	6
8:00AM TO						
8.15AM	13	35	65	18	16	36
8:15AM TO						
8:30AM	24	35	42	31	27	41
8:30AM TO						
8:45AM	74	41	86	45	25	45
8:45AM TO						
9:00AM	92	51	112	54	24	54
	1	2	3	4	5	6
8:00-9:00am	203	162	305	148	92	176

INTERSECTION: CHURCH ST/SWETE ST

DAY: DATE:	OBSERVER
<u>05/12/22</u>	1 11 1
Fkne	
HP	
	\overline{a} $(0,5)$ (\overline{a})
	3
	CHURCH ST
	CHURCHST
	CHURCH

Tkme	MOVEMENT NUMBER											
AM	1	2	3	4	5	6						
4.45PM TO												
5.00PM	45	54	33	21	24	32						
5.00PM TO												
5.15PM	40	67	41	20	17	30						
5.15PM TO												
5.30PM	33	51	29	45	26	45						
5.30PM TO												
5.45PM	49	49	43	61	20	61						
	1	2	3	4	5	6						
4:45-5:45pm	167	221	146	147	87	168						

APPENDIX C

APPENDIX C EXISTING SIDRA ANALYSIS

Site: 2785 [Existing AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	15.0	15.0 km/h
Travel Distance (Total)	veh-km/h	2812.1	3374.5 pers-km/h
Fravel Time (Total)	veh-h/h	187.9	225.5 pers-h/h
Desired Speed	km/h	60.0	·
Speed Efficiency		0.25	
ravel Time Index		1.66	
Congestion Coefficient		4.01	
0			
Demand Flows (Total)	veh/h	2294	2753 pers/h
Arrival Flows (Total)	veh/h	2294	
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		1.186	
Practical Spare Capacity	%	-24.1	
Effective Intersection Capacity	veh/h	1934	
Control Delay (Total)	veh-h/h	140.14	168.17 pers-h/h
Control Delay (Average)	sec	219.9	219.9 sec
Control Delay (Worst Lane by MC)	sec	403.4	115.0
Control Delay (Worst Movement by MC)	sec	415.8	415.8 sec
Geometric Delay (Average)	sec	1.1	
Stop-Line Delay (Average)	sec	218.9	
Idling Time (Average)	sec	206.3	
Intersection Level of Service (LOS)		LOS F	
95% Back of Queue - Veh (Worst Lane)	veh	226.3	
95% Back of Queue - Dist (Worst Lane)	m	1583.8	
Ave. Que Storage Ratio (Worst Lane)		1.29	
Effective Stops (Total)	veh/h	3645	4374 pers/h
Effective Stop Rate		1.59	1.59
Proportion Queued		0.82	0.82
Performance Index		371.7	371.7
Cost (Total)	\$/h	6411.36	6411.36 \$/h
Fuel Consumption (Total)	L/h	399.1	
Carbon Dioxide (Total)	kg/h	938.0	
Hydrocarbons (Total)	kg/h	0.094	
Carbon Monoxide (Total)	kg/h	0.83	
NOx (Total)	kg/h	0.224	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 5.3% 0.0% 0.0%

Intersection Performance - An	nual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	1,101,120	1,321,344 pers/y
Delay (Total)	veh-h/y	67,268	80,722 pers-h/y
Effective Stops (Total)	veh/y	1,749,490	2,099,388 pers/y

Travel Distance (Total)	veh-km/y	1,349,787	1,619,745 pers-km/y
Travel Time (Total)	veh-h/y	90,187	108,225 pers-h/y
Cost (Total)	\$/y	3,077,453	3,077,453 \$/y
Fuel Consumption (Total)	L/y	191,591	
Carbon Dioxide (Total)	kg/y	450,238	
Hydrocarbons (Total)	kg/y	45	
Carbon Monoxide (Total)	kg/y	399	
NOx (Total)	kg/y	107	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:14 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [Existing AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Railwa	ay St E													
5	T1	All MCs	689	0.0	689	0.0	0.284	15.6	LOS B	12.0	83.9	0.52	0.46	0.52	49.8
6	R2	All MCs	135	0.0	135	0.0	*0.577	80.5	LOS F	9.8	68.3	1.00	0.78	1.00	25.4
Appro	bach		824	0.0	824	0.0	0.577	26.2	LOS B	12.0	83.9	0.60	0.51	0.60	44.0
North	: Chur	ch St													
7	L2	All MCs	213	0.0	213	0.0	0.270	36.5	LOS C	9.9	69.4	0.69	0.76	0.69	37.1
9	R2	All MCs	48	0.0	48	0.0	0.040	42.8	LOS D	2.3	16.2	0.71	0.70	0.71	38.0
Appro	bach		261	0.0	261	0.0	0.270	37.7	LOS C	9.9	69.4	0.69	0.75	0.69	36.7
West	Railw	/ay St W													
10	L2	All MCs	44	0.0	44	0.0	* 1.186	415.8	LOS F	12.5	87.8	1.00	1.54	3.28	8.9
11	T1	All MCs	1165	0.0	1165	0.0	* 1.186	390.4	LOS F	226.3	1583.8	1.00	2.54	2.97	9.7
Appro	bach		1209	0.0	1209	0.0	1.186	391.3	LOS F	226.3	1583.8	1.00	2.50	2.98	9.7
All Ve	hicles		2294	0.0	2294	0.0	1.186	219.9	LOS F	226.3	1583.8	0.82	1.59	1.87	15.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:14 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [Existing PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Performance Measure	Vehicles:	All MCs	Persons
Fravel Speed (Average)	km/h	34.2	34.2 km/h
Travel Distance (Total)	veh-km/h	2834.3	3401.2 pers-km/h
Travel Time (Total)	veh-h/h	82.9	99.5 pers-h/h
Desired Speed	km/h	60.0	F 1011
Speed Efficiency		0.57	
ravel Time Index		5.22	
Congestion Coefficient		1.76	
Demand Flows (Total)	veh/h	2348	2818 pers/h
Arrival Flows (Total)	veh/h	2348	
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.974	
Practical Spare Capacity	%	-7.6	
Effective Intersection Capacity	veh/h	2411	
Control Delay (Total)	veh-h/h	35.24	42.28 pers-h/h
Control Delay (Average)	sec	54.0	54.0 sec
Control Delay (Worst Lane by MC)	sec	84.7	
Control Delay (Worst Movement by MC)	sec	94.2	94.2 sec
Geometric Delay (Average)	sec	1.5	
Stop-Line Delay (Average)	sec	52.5	
dling Time (Average)	sec	45.2	
ntersection Level of Service (LOS)		LOS D	
		00.0	
95% Back of Queue - Veh (Worst Lane)	veh	88.9	
95% Back of Queue - Dist (Worst Lane)	m	622.2	
Ave. Que Storage Ratio (Worst Lane)	v e le /le	0.51	2420 mana/h
Effective Stops (Total)	veh/h	2023	2428 pers/h
Effective Stop Rate		0.86	0.86
Proportion Queued		0.81	0.81
Performance Index		179.1	179.1
Cost (Total)	\$/h	2950.53	2950.53 \$/h
Fuel Consumption (Total)	L/h	252.7	2000.00 φ/Π
Carbon Dioxide (Total)	kg/h	593.9	
lydrocarbons (Total)	kg/h	0.053	
Carbon Monoxide (Total)	kg/h	0.66	
NOx (Total)	kg/h	0.159	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 5.8% 0.0% 0.0%

Intersection Performance - An	inual Values				
Performance Measure	Vehicles:	All MCs	Persons		
Demand Flows (Total)	veh/y	1,127,040	1,352,448 pers/y		
Delay (Total)	veh-h/y	16,913	20,296 pers-h/y		
Effective Stops (Total)	veh/y	971,208	1,165,450 pers/y		

Travel Distance (Total)	veh-km/y	1,360,481	1,632,578 pers-km/y	
Travel Time (Total)	veh-h/y	39,811	47,773 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	1,416,254 121,300 285,054 25 318 76	1,416,254 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:14 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [Existing PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Railway St E														
5	T1	All MCs	753	0.0	753	0.0	0.310	15.9	LOS B	13.4	93.5	0.54	0.47	0.54	49.6
6	R2	All MCs	195	0.0	195	0.0	*0.833	84.7	LOS F	14.8	103.5	1.00	0.89	1.17	24.7
Appro	bach		948	0.0	948	0.0	0.833	30.1	LOS C	14.8	103.5	0.63	0.56	0.67	42.2
North	: Chur	ch St													
7	L2	All MCs	339	0.0	339	0.0	0.450	51.8	LOS D	17.3	121.2	0.76	0.80	0.76	36.1
9	R2	All MCs	76	0.0	76	0.0	0.063	55.5	LOS D	3.7	25.8	0.72	0.72	0.72	37.9
Appro	bach		415	0.0	415	0.0	0.450	52.5	LOS D	17.3	121.2	0.75	0.79	0.75	32.2
West	Railw	ay St W													
10	L2	All MCs	27	0.0	27	0.0	*0.974	94.2	LOS F	3.3	22.9	1.00	0.96	1.96	28.7
11	T1	All MCs	958	0.0	958	0.0	*0.974	77.3	LOS F	88.9	622.2	1.00	1.19	1.30	29.6
Appro	bach		985	0.0	985	0.0	0.974	77.7	LOS F	88.9	622.2	1.00	1.19	1.32	29.6
All Ve	hicles		2348	0.0	2348	0.0	0.974	54.0	LOS D	88.9	622.2	0.81	0.86	0.95	34.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:14 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing AM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	37.6 1956.6 52.0 60.0 0.63 5.86 1.59	37.6 km/h 2348.0 pers-km/h 62.4 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	2395 2395 0.0 0.0 2.000 -60.0 1198	2874 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	17.20 25.9 2388.2 2388.2 5.4 20.4 19.8 NA	20.64 pers-h/h 25.9 sec 2388.2 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	9.8 68.8 0.05 1397 0.58 0.01 68.4	1676 pers/h 0.58 0.01 68.4
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1927.78 180.8 424.9 0.037 0.46 0.127	1927.78 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0%

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 99.7% 0.0% 0.0%

Intersection Performance - Annual Values											
Performance Measure	Vehicles:	All MCs	Persons								
Demand Flows (Total)	veh/y	1,149,600	1,379,520 pers/y								

Delay (Total)	veh-h/y	8,257	9,908 pers-h/y
Effective Stops (Total)	veh/y	670,442	804,531 pers/y
Travel Distance (Total)	veh-km/y	939,182	1,127,018 pers-km/y
Travel Time (Total)	veh-h/y	24,951	29,941 pers-h/y
Cost (Total)	\$/y	925,332	925,332 \$/y
Fuel Consumption (Total)	L/y	86,795	
Carbon Dioxide (Total)	kg/y	203,969	
Hydrocarbons (Total)	kg/y	18	
Carbon Monoxide (Total)	kg/y	221	
NOx (Total)	kg/y	61	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:15 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing AM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Vehio	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Derr F [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	SouthEast: Arthur St E														
4	L2	All MCs	819	0.0	819	0.0	0.441	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	51.2
5	T1	All MCs	12	0.0	12	0.0	2.000	2388.2	LOS F	9.8	68.8	1.00	1.40	2.97	1.5
Appro	bach		831	0.0	831	0.0	2.000	40.1	LOS C	9.8	68.8	0.01	0.59	0.04	32.1
North	West:	Arthur St	W												
11	T1	All MCs	11	0.0	11	0.0	1.403	1036.1	LOS F	8.5	59.8	1.00	1.49	3.37	3.0
12	R2	All MCs	6	0.0	6	0.0	1.403	1320.8	LOS F	8.5	59.8	1.00	1.49	3.37	2.5
Appro	bach		17	0.0	17	0.0	1.403	1136.6	LOS F	8.5	59.8	1.00	1.49	3.37	2.8
South	West:	Railway	St												
1	L2	All MCs	10	0.0	10	0.0	0.833	6.0	LOS A	0.0	0.0	0.00	0.57	0.00	50.2
3	R2	All MCs	1537	0.0	1537	0.0	0.833	6.0	LOS A	0.0	0.0	0.00	0.57	0.00	50.2
Appro	ach		1547	0.0	1547	0.0	0.833	6.0	NA	0.0	0.0	0.00	0.57	0.00	50.2
All Ve	hicles		2395	0.0	2395	0.0	2.000	25.9	NA	9.8	68.8	0.01	0.58	0.04	37.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / IPC | Processed: Monday, 16 October 2023 8:21:15 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing PM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	49.7 1773.2 35.7 60.0 0.83 8.09 1.21	49.7 km/h 2127.9 pers-km/h 42.8 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	2171 2171 0.0 0.0 0.662 45.2 3278	2605 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	4.41 7.3 144.0 207.6 5.5 1.8 1.5 NA	5.29 pers-h/h 7.3 sec 207.6 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	1.5 10.6 0.01 1262 0.58 0.01 42.4	1515 pers/h 0.58 0.01 42.4
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1384.38 151.9 356.9 0.031 0.41 0.114	1384.38 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 98.1% 0.0% 0.0%

Intersection Performance - Annual Values											
Performance Measure	Vehicles:	All MCs	Persons								
Demand Flows (Total)	veh/y	1,042,080	1,250,496 pers/y								

Delay (Total)	veh-h/y	2,116	2,539 pers-h/y
Effective Stops (Total)	veh/y	605,850	727,020 pers/y
Travel Distance (Total)	veh-km/y	851,146	1,021,375 pers-km/y
Travel Time (Total)	veh-h/y	17,139	20,566 pers-h/y
Cost (Total)	\$/y	664,502	664,502 \$/y
Fuel Consumption (Total)	L/y	72,905	
Carbon Dioxide (Total)	kg/y	171,326	
Hydrocarbons (Total)	kg/y	15	
Carbon Monoxide (Total)	kg/y	198	
NOx (Total)	kg/y	55	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:16 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing PM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	SouthEast: Arthur St E														
4	L2	All MCs	913	0.0	913	0.0	0.492	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	51.2
5	T1	All MCs	8	0.0	8	0.0	0.192	92.7	LOS F	0.5	3.7	0.97	0.99	1.00	23.4
Appro	ach		921	0.0	921	0.0	0.492	6.5	LOS A	0.5	3.7	0.01	0.58	0.01	50.5
North	West:	Arthur St	W												
11	T1	All MCs	10	0.0	10	0.0	0.551	80.4	LOS F	1.5	10.6	0.99	1.04	1.18	17.7
12	R2	All MCs	10	0.0	10	0.0	0.551	207.6	LOS F	1.5	10.6	0.99	1.04	1.18	15.1
Appro	bach		20	0.0	20	0.0	0.551	144.0	LOS F	1.5	10.6	0.99	1.04	1.18	16.5
South	West:	Railway	St												
1	L2	All MCs	11	0.0	11	0.0	0.662	5.7	LOS A	0.0	0.0	0.00	0.58	0.00	50.9
3	R2	All MCs	1219	0.0	1219	0.0	0.662	5.7	LOS A	0.0	0.0	0.00	0.58	0.00	50.9
Appro	ach		1230	0.0	1230	0.0	0.662	5.7	NA	0.0	0.0	0.00	0.58	0.00	50.9
All Ve	hicles		2171	0.0	2171	0.0	0.662	7.3	NA	1.5	10.6	0.01	0.58	0.01	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:16 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing AM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	46.4 1101.7 23.7 52.4 0.89 8.73 1.13	46.4 km/h 1322.1 pers-km/h 28.5 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1086 1086 0.0 0.0 0.429 98.0 2530	1303 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.91 6.3 7.2 8.6 5.2 1.2 0.0 LOS A	2.29 pers-h/h 6.3 sec 8.6 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	3.2 22.2 0.02 614 0.57 0.45 31.5	737 pers/h 0.57 0.45 31.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	886.75 85.6 201.2 0.015 0.18 0.055	886.75 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.1% 0.7%

Intersection Performance - Annual Values											
Performance Measure	Vehicles:	All MCs	Persons								
Demand Flows (Total)	veh/y	521,280	625,536 pers/y								
Delay (Total)	veh-h/y	915	1,098 pers-h/y								

Effective Stops (Total)	veh/y	294,870	353,844 pers/y	
Travel Distance (Total)	veh-km/y	528,838	634,605 pers-km/y	
Travel Time (Total)	veh-h/y	11,391	13,669 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	425,639 41,090 96,562 7 89 26	425,639 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:12 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing AM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	162	0.0	162	0.0	0.281	5.9	LOS A	1.8	12.3	0.43	0.59	0.43	48.1
6	R2	All MCs	148	0.0	148	0.0	0.281	8.6	LOS A	1.8	12.3	0.43	0.59	0.43	47.6
Appro	bach		310	0.0	310	0.0	0.281	7.2	LOS A	1.8	12.3	0.43	0.59	0.43	47.8
North	: Swet	te St													
7	L2	All MCs	92	0.0	92	0.0	0.254	5.9	LOS A	1.5	10.8	0.45	0.61	0.45	47.2
9	R2	All MCs	176	0.0	176	0.0	0.254	7.8	LOS A	1.5	10.8	0.45	0.61	0.45	44.1
Appro	bach		268	0.0	268	0.0	0.254	7.1	LOS A	1.5	10.8	0.45	0.61	0.45	45.1
West	Chur	ch St W													
10	L2	All MCs	305	0.0	305	0.0	0.429	5.7	LOS A	3.2	22.2	0.46	0.53	0.46	44.9
11	T1	All MCs	203	0.0	203	0.0	0.429	4.9	LOS A	3.2	22.2	0.46	0.53	0.46	48.5
Appro	bach		508	0.0	508	0.0	0.429	5.4	LOS A	3.2	22.2	0.46	0.53	0.46	46.3
All Ve	hicles		1086	0.0	1086	0.0	0.429	6.3	LOS A	3.2	22.2	0.45	0.57	0.45	46.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:12 AM

Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing PM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	46.9 950.2 20.3 52.9 0.89 8.72 1.13	46.9 km/h 1140.3 pers-km/h 24.3 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	936 936 0.0 0.324 162.1 2886	1123 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.64 6.3 7.0 8.6 5.3 1.0 0.0 LOS A	1.97 pers-h/h 6.3 sec 8.6 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	2.1 14.7 0.01 527 0.56 0.41 26.5	632 pers/h 0.56 0.41 26.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	758.32 73.5 172.6 0.013 0.16 0.047	758.32 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.8 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 0.0% 0.8%

Intersection Performance - Annual Values											
Performance Measure	Vehicles:	All MCs	Persons								
Demand Flows (Total)	veh/y	449,280	539,136 pers/y								
Delay (Total)	veh-h/y	787	945 pers-h/y								

Effective Stops (Total)	veh/y	253,000	303,600 pers/y	
Travel Distance (Total)	veh-km/y	456,118	547,342 pers-km/y	
Travel Time (Total)	veh-h/y	9,732	11,679 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	363,995 35,264 82,870 6 77 23	363,995 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:13 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing PM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	221	0.0	221	0.0	0.324	5.9	LOS A	2.1	14.7	0.43	0.58	0.43	48.2
6	R2	All MCs	147	0.0	147	0.0	0.324	8.6	LOS A	2.1	14.7	0.43	0.58	0.43	47.7
Appro	bach		368	0.0	368	0.0	0.324	7.0	LOS A	2.1	14.7	0.43	0.58	0.43	48.0
North	: Swet	te St													
7	L2	All MCs	87	0.0	87	0.0	0.230	5.6	LOS A	1.3	9.4	0.40	0.59	0.40	47.3
9	R2	All MCs	168	0.0	168	0.0	0.230	7.5	LOS A	1.3	9.4	0.40	0.59	0.40	44.2
Appro	bach		255	0.0	255	0.0	0.230	6.9	LOS A	1.3	9.4	0.40	0.59	0.40	45.2
West	Chur	ch St W													
10	L2	All MCs	146	0.0	146	0.0	0.271	5.5	LOS A	1.7	11.8	0.39	0.52	0.39	45.1
11	T1	All MCs	167	0.0	167	0.0	0.271	4.7	LOS A	1.7	11.8	0.39	0.52	0.39	48.7
Appro	bach		313	0.0	313	0.0	0.271	5.1	LOS A	1.7	11.8	0.39	0.52	0.39	47.0
All Ve	hicles		936	0.0	936	0.0	0.324	6.3	LOS A	2.1	14.7	0.41	0.56	0.41	46.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:13 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Va	alues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	48.3 944.1 19.6 60.0 0.80 7.83 1.24	2.4 km/h 1.0 ped-km/h 0.4 ped-h/h	47.5 km/h 1133.9 pers-km/h 23.9 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	929 929 0.1 0.595 51.3 1561	50 ped/h 0.028	1165 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	3.37 13.1 20.6 20.6 3.5 9.5 6.5 LOS A	0.20 ped-h/h 14.5 sec 14.5 sec LOS B	4.24 pers-h/h 13.1 sec 20.6 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	4.0 28.0 0.03 655 0.71 0.71 38.7	43 ped/h 0.85 0.85 0.7	829 pers/h 0.71 0.71 39.3
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	748.28 78.7 184.9 0.016 0.22 0.061	10.20 \$/h	758.49 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 4.2% 0.0% 0.0%

Intersection Performance - Annual Values											
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons							
Demand Flows (Total)	veh/y	445,920	24,000 ped/y	559,104 pers/y							

Delay (Total)	veh-h/y	1,617	97 ped-h/y	2,037 pers-h/y
Effective Stops (Total)	veh/y	314,516	20,443 ped/y	397,862 pers/y
Travel Distance (Total)	veh-km/y	453,176	480 ped-km/y	544,292 pers-km/y
Travel Time (Total)	veh-h/y	9,385	199 ped-h/y	11,461 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	359,176 37,759 88,748 8 105 29	4,898 \$/y	364,074 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:19 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	140	0.1	140	0.1	0.320	6.7	LOS A	2.5	17.6	0.69	0.58	0.69	51.9
6	R2	All MCs	102	0.1	102	0.1	*0.320	15.3	LOS B	2.5	17.6	0.78	0.69	0.78	48.3
Appro	bach		242	0.1	242	0.1	0.320	10.3	LOS A	2.5	17.6	0.72	0.62	0.72	50.3
North	: Bach	ell Ave													
7	L2	All MCs	100	0.1	100	0.1	0.103	10.7	LOS A	1.0	7.0	0.53	0.69	0.53	49.2
9	R2	All MCs	163	0.1	163	0.1	*0.390	20.6	LOS B	2.9	20.1	0.89	0.78	0.89	43.4
Appro	bach		263	0.1	263	0.1	0.390	16.9	LOS B	2.9	20.1	0.75	0.74	0.75	45.4
West	Chur	ch St W													
10	L2	All MCs	221	0.0	221	0.0	0.185	7.0	LOS A	0.9	6.5	0.39	0.65	0.39	51.9
11	T1	All MCs	203	0.0	203	0.0	*0.595	18.0	LOS B	4.0	28.0	0.97	0.81	1.03	46.3
Appro	bach		424	0.0	424	0.0	0.595	12.2	LOS A	4.0	28.0	0.67	0.73	0.70	49.1
All Ve	hicles		929	0.1	929	0.1	0.595	13.1	LOS A	4.0	28.0	0.71	0.71	0.72	48.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance													
Mov	Input	Dem.	Aver.	r. Level of AVERAGE			Prop.	Eff.	Travel	Travel	Aver.			
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. 3	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
East: Church	St E													
P2 Full	50	50	14.5	LOS B	0.0	0.0	0.85	0.85	29.9	20.0	0.67			
All Pedestrians	50	50	14.5	LOS B	0.0	0.0	0.85	0.85	29.9	20.0	0.67			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:19 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly V	alues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	46.2 1121.4 24.2 60.0 0.77 7.45 1.30	2.4 km/h 1.0 ped-km/h 0.4 ped-h/h	45.6 km/h 1346.6 pers-km/h 29.5 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1104 1104 0.0 0.625 43.9 1766	50 ped/h 0.019	1375 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	5.00 16.3 22.9 22.9 3.8 12.5 9.3 LOS B	0.21 ped-h/h 15.2 sec 15.2 sec LOS B	6.21 pers-h/h 16.3 sec 22.9 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	8.7 61.0 0.04 816 0.74 0.74 53.7	39 ped/h 0.78 0.78 0.6	1018 pers/h 0.74 0.74 54.3
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	922.34 95.0 223.2 0.019 0.26 0.069	10.46 \$/h	932.81 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 4.0% 0.0% 0.0%

Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons						
Demand Flows (Total)	veh/y	529,920	24,000 ped/y	659,904 pers/y						

Delay (Total)	veh-h/y	2,398	102 ped-h/y	2,979 pers-h/y
Effective Stops (Total)	veh/y	391,515	18,759 ped/y	488,577 pers/y
Travel Distance (Total)	veh-km/y	538,250	480 ped-km/y	646,380 pers-km/y
Travel Time (Total)	veh-h/y	11,639	204 ped-h/y	14,171 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	442,724 45,578 107,113 9 126 33	5,023 \$/y	447,747 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:20 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Existing PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Derr Fl [Total veh/h	lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	163	0.0	163	0.0	0.299	11.1	LOS A	3.1	21.7	0.75	0.61	0.75	49.2
6	R2	All MCs	51	0.0	51	0.0	*0.299	20.9	LOS B	3.1	21.7	0.79	0.65	0.79	46.6
Appro	ach		214	0.0	214	0.0	0.299	13.5	LOS A	3.1	21.7	0.76	0.62	0.76	48.6
North	: Bach	ell Ave													
7	L2	All MCs	120	0.0	120	0.0	0.108	10.1	LOS A	1.3	8.8	0.45	0.68	0.45	49.6
9	R2	All MCs	418	0.0	418	0.0	*0.625	20.2	LOS B	8.7	61.0	0.88	0.83	0.88	43.6
Appro	ach		538	0.0	538	0.0	0.625	18.0	LOS B	8.7	61.0	0.78	0.79	0.78	44.8
West	Chur	ch St W													
10	L2	All MCs	162	0.0	162	0.0	0.126	6.7	LOS A	0.6	4.5	0.30	0.63	0.30	52.2
11	T1	All MCs	190	0.0	190	0.0	*0.609	22.9	LOS B	4.7	32.8	0.98	0.82	1.04	43.6
Appro	ach		352	0.0	352	0.0	0.609	15.4	LOS B	4.7	32.8	0.67	0.73	0.70	47.2
All Ve	hicles		1104	0.0	1104	0.0	0.625	16.3	LOS B	8.7	61.0	0.74	0.74	0.75	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance													
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.			
ID Crossing	Crossing Vol. Flow Delay Service					EUE Dist]	Que	Stop Rate	Time	Dist.	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
East: Church	St E													
P2 Full	50	50	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65			
All Pedestrians	50	50	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 8:21:20 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing AM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 8:00-9:00am Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	45.0 1227.4 27.3 50.0 0.90 8.89 1.11	45.0 km/h 1472.8 pers-km/h 32.7 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1212 1212 0.0 0.0 0.408 96.1 2970	1454 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.00 5.9 12.7 12.7 4.5 1.4 0.7 NA	2.40 pers-h/h 5.9 sec 12.7 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	1.7 11.8 0.01 739 0.61 0.12 31.3	887 pers/h 0.61 0.12 31.3
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1004.30 91.7 215.4 0.015 0.17 0.054	1004.30 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0%

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 74.5% 0.0% 0.0%

Intersection Performance - Ann	ual Values			
Performance Measure	Vehicles:	All MCs	Persons	
Demand Flows (Total)	veh/y	581,760	698,112 pers/y	

Delay (Total)	veh-h/y	961	1,153 pers-h/y
Effective Stops (Total)	veh/y	354,848	425,817 pers/y
Travel Distance (Total)	veh-km/y	589,129	706,955 pers-km/y
Travel Time (Total)	veh-h/y	13,088	15,706 pers-h/y
Cost (Total)	\$/y	482,064	482,064 \$/y
Fuel Consumption (Total)	L/y	44,000	
Carbon Dioxide (Total)	kg/y	103,399	
Hydrocarbons (Total)	kg/y	7	
Carbon Monoxide (Total)	kg/y	82	
NOx (Total)	kg/y	26	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:28 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing AM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 8:00-9:00am Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Railway Street Bridge														
1	L2	All MCs	207	0.0	207	0.0	0.379	4.7	LOS A	0.0	0.0	0.00	0.55	0.00	45.8
3	R2	All MCs	497	0.0	497	0.0	0.379	4.7	LOS A	0.0	0.0	0.00	0.55	0.00	45.6
Appro	ach		704	0.0	704	0.0	0.379	4.7	NA	0.0	0.0	0.00	0.55	0.00	45.7
East:	Churc	h St E													
4	L2	All MCs	315	0.0	315	0.0	0.170	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	45.9
Appro	ach		315	0.0	315	0.0	0.170	4.6	NA	0.0	0.0	0.00	0.53	0.00	45.9
West:	Churc	ch St W													
12	R2	All MCs	193	0.0	193	0.0	0.408	12.7	LOS A	1.7	11.8	0.74	0.97	1.00	41.5
Appro	ach		193	0.0	193	0.0	0.408	12.7	LOS A	1.7	11.8	0.74	0.97	1.00	41.5
All Ve	hicles		1212	0.0	1212	0.0	0.408	5.9	NA	1.7	11.8	0.12	0.61	0.16	45.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:28 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing PM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 4:45-5:45pm Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	44.7 1512.8 33.9 50.0 0.89 8.82 1.12	44.7 km/h 1815.4 pers-km/h 40.6 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1492 1492 0.0 0.584 37.0 2554	1790 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.74 6.6 18.3 18.3 4.5 2.1 1.2 NA	3.29 pers-h/h 6.6 sec 18.3 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	2.7 18.6 0.01 916 0.61 0.12 39.2	1099 pers/h 0.61 0.12 39.2
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1245.16 113.0 265.6 0.019 0.21 0.066	1245.16 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 80.5% 0.0% 0.0%

Intersection Performance - Ann	Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Persons								
Demand Flows (Total)	veh/y	716,160	859,392 pers/y								

Delay (Total)	veh-h/y	1,316	1,580 pers-h/y
Effective Stops (Total)	veh/y	439,576	527,491 pers/y
Travel Distance (Total)	veh-km/y	726,151	871,381 pers-km/y
Travel Time (Total)	veh-h/y	16,250	19,500 pers-h/y
Cost (Total)	\$/y	597,678	597,678 \$/y
Fuel Consumption (Total)	L/y	54,245	
Carbon Dioxide (Total)	kg/y	127,476	
Hydrocarbons (Total)	kg/y	9	
Carbon Monoxide (Total)	kg/y	101	
NOx (Total)	kg/y	32	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:29 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Existing PM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 4:45-5:45pm Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Railway Street Bridge														
1	L2	All MCs	351	0.0	351	0.0	0.339	4.7	LOS A	0.0	0.0	0.00	0.54	0.00	45.8
3	R2	All MCs	279	0.0	279	0.0	0.339	4.7	LOS A	0.0	0.0	0.00	0.54	0.00	45.6
Appro	ach		630	0.0	630	0.0	0.339	4.7	NA	0.0	0.0	0.00	0.54	0.00	45.7
East:	Churc	h St E													
4	L2	All MCs	650	0.0	650	0.0	0.350	4.7	LOS A	0.0	0.0	0.00	0.53	0.00	45.8
Appro	ach		650	0.0	650	0.0	0.350	4.7	NA	0.0	0.0	0.00	0.53	0.00	45.8
West:	Churc	ch St W													
12	R2	All MCs	212	0.0	212	0.0	0.584	18.3	LOS B	2.7	18.6	0.86	1.10	1.40	39.0
Appro	ach		212	0.0	212	0.0	0.584	18.3	LOS B	2.7	18.6	0.86	1.10	1.40	39.0
All Ve	hicles		1492	0.0	1492	0.0	0.584	6.6	NA	2.7	18.6	0.12	0.61	0.20	44.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:29 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

APPENDIX C-FUTURE SIDRA

Site: 2785 [Future AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None)

Signals - Actuated Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	15.0 2845.1 189.2 60.0 0.25 1.67 3.99	15.0 km/h 3414.2 pers-km/h 227.0 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	2336 2336 0.0 0.0 1.186 -24.1 1970	2804 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	140.81 217.0 398.2 410.6 1.2 215.7 203.2 LOS F	168.97 pers-h/h 217.0 sec 410.6 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	223.8 1566.7 1.28 3644 1.56 0.82 374.5	4373 pers/h 1.56 0.82 374.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	6449.48 402.4 945.6 0.095 0.84 0.226	6449.48 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 5.0% 0.0% 0.0%

Intersection Performance - An	nual Values			
Performance Measure	Vehicles:	All MCs	Persons	
Demand Flows (Total)	veh/y	1,121,510	1,345,813 pers/y	
Delay (Total)	veh-h/y	67,587	81,105 pers-h/y	
Effective Stops (Total)	veh/y	1,749,230	2,099,077 pers/y	

Travel Distance (Total)	veh-km/y	1,365,671	1,638,806 pers-km/y	
Travel Time (Total)	veh-h/y	90,802	108,963 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	3,095,752 193,150 453,903 45 404 108	3,095,752 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:30 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [Future AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am

Site Category: (None) Signals - Actuated Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East: Railway St E															
5	T1	All MCs	648	0.0	648	0.0	0.267	16.0	LOS B	11.1	78.0	0.50	0.44	0.50	49.6
6	R2	All MCs	197	0.0	197	0.0	*0.842	84.7	LOS F	14.5	101.6	1.00	0.79	1.00	24.7
Appro	bach		845	0.0	845	0.0	0.842	32.0	LOS C	14.5	101.6	0.62	0.52	0.62	41.4
North	: Chur	ch St													
7	L2	All MCs	235	0.0	235	0.0	0.301	40.9	LOS C	11.1	77.6	0.68	0.76	0.68	36.5
9	R2	All MCs	48	0.0	48	0.0	0.040	46.6	LOS D	2.3	16.2	0.69	0.70	0.69	37.7
Appro	bach		283	0.0	283	0.0	0.301	41.8	LOS C	11.1	77.6	0.68	0.75	0.68	35.3
West	Railw	ay St W													
10	L2	All MCs	44	0.0	44	0.0	* 1.186	410.6	LOS F	12.4	86.6	1.00	1.46	2.94	9.0
11	T1	All MCs	1165	0.0	1165	0.0	* 1.186	386.2	LOS F	223.8	1566.7	1.00	2.51	2.94	9.8
Appro	bach		1209	0.0	1209	0.0	1.186	387.1	LOS F	223.8	1566.7	1.00	2.47	2.94	9.8
All Ve	hicles		2336	0.0	2336	0.0	1.186	217.0	LOS F	223.8	1566.7	0.82	1.56	1.83	15.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:30 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [Future PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Performance Measure	Vehicles:	All MCs	Persons
ravel Speed (Average)	km/h	33.6	33.6 km/h
Travel Distance (Total)	veh-km/h	2904.5	3485.3 pers-km/h
ravel Time (Total)	veh-h/h	86.4	103.7 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency		0.56	
ravel Time Index		5.11	
Congestion Coefficient		1.79	
Demand Flows (Total)	veh/h	2417	2900 pers/h
Arrival Flows (Total)	veh/h	2417	
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.974	
Practical Spare Capacity	%	-7.6	
Effective Intersection Capacity	veh/h	2482	
Control Delay (Total)	veh-h/h	37.49	44.99 pers-h/h
Control Delay (Average)	sec	55.8	55.8 sec
Control Delay (Worst Lane by MC)	sec	93.7	
Control Delay (Worst Movement by MC)	sec	94.2	94.2 sec
Geometric Delay (Average)	sec	1.6	
Stop-Line Delay (Average)	sec	54.2	
dling Time (Average)	sec	46.1	
ntersection Level of Service (LOS)		LOS D	
95% Back of Queue - Veh (Worst Lane)	veh	88.9	
95% Back of Queue - Dist (Worst Lane)	m	622.2	
Ave. Que Storage Ratio (Worst Lane)		0.51	
Effective Stops (Total)	veh/h	2110	2533 pers/h
Effective Stop Rate		0.87	0.87
Proportion Queued		0.81	0.81
Performance Index		186.8	186.8
	ф.µ.	2052.00	
Cost (Total)	\$/h	3053.98	3053.98 \$/h
Fuel Consumption (Total)	L/h	260.7	
Carbon Dioxide (Total)	kg/h	612.6	
Hydrocarbons (Total)	kg/h	0.055	
Carbon Monoxide (Total)	kg/h	0.68	
NOx (Total)	kg/h	0.164	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 5.8% 0.0% 0.0%

Intersection Performance - An	inual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	1,160,160	1,392,192 pers/y
Delay (Total)	veh-h/y	17,996	21,596 pers-h/y
Effective Stops (Total)	veh/y	1,013,021	1,215,626 pers/y

Travel Distance (Total)	veh-km/y	1,394,139	1,672,966 pers-km/y	
Travel Time (Total)	veh-h/y	41,479	49,774 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	1,465,911 125,130 294,055 26 327 79	1,465,911 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 October 2023 8:42:09 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [Future PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East: Railway St E															
5	T1	All MCs	753	0.0	753	0.0	0.310	15.9	LOS B	13.4	93.5	0.54	0.47	0.54	49.6
6	R2	All MCs	219	0.0	219	0.0	*0.936	93.7	LOS F	17.9	125.0	1.00	1.00	1.41	23.3
Appro	bach		972	0.0	972	0.0	0.936	33.4	LOS C	17.9	125.0	0.64	0.59	0.73	40.8
North	: Chur	ch St													
7	L2	All MCs	384	0.0	384	0.0	0.510	55.9	LOS D	20.3	141.9	0.79	0.81	0.79	35.7
9	R2	All MCs	76	0.0	76	0.0	0.063	58.5	LOS E	3.7	25.8	0.72	0.72	0.72	37.9
Appro	bach		460	0.0	460	0.0	0.510	56.3	LOS D	20.3	141.9	0.78	0.80	0.78	31.1
West	Railw	ay St W													
10	L2	All MCs	27	0.0	27	0.0	*0.974	94.2	LOS F	3.3	22.9	1.00	0.96	1.96	28.7
11	T1	All MCs	958	0.0	958	0.0	*0.974	77.3	LOS F	88.9	622.2	1.00	1.19	1.30	29.6
Appro	bach		985	0.0	985	0.0	0.974	77.7	LOS F	88.9	622.2	1.00	1.19	1.32	29.6
All Ve	hicles		2417	0.0	2417	0.0	0.974	55.8	LOS D	88.9	622.2	0.81	0.87	0.98	33.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 October 2023 8:42:09 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Future AM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values											
Performance Measure	Vehicles:	All MCs	Persons								
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	38.0 2024.3 53.3 60.0 0.63 5.92 1.58	38.0 km/h 2429.2 pers-km/h 64.0 pers-h/h								
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	2478 2478 0.0 0.0 2.000 -60.0 1239	2974 pers/h								
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	17.30 25.1 2306.9 2306.9 5.4 19.7 19.1 NA	20.76 pers-h/h 25.1 sec 2306.9 sec								
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	9.8 68.5 0.05 1443 0.58 0.01 70.3	1732 pers/h 0.58 0.01 70.3								
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1978.93 186.3 437.7 0.038 0.47 0.131	1978.93 \$/h								

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 99.7% 0.0% 0.0%

Intersection Performance - An	nual Values			
Performance Measure	Vehicles:	All MCs	Persons	
Demand Flows (Total)	veh/y	1,189,440	1,427,328 pers/y	

Delay (Total)	veh-h/y	8,305	9,966 pers-h/y
Effective Stops (Total)	veh/y	692,873	831,448 pers/y
Travel Distance (Total)	veh-km/y	971,670	1,166,004 pers-km/y
Travel Time (Total)	veh-h/y	25,590	30,708 pers-h/y
Cost (Total)	\$/y	949,887	949,887 \$/y
Fuel Consumption (Total)	L/y	89,408	
Carbon Dioxide (Total)	kg/y	210,109	
Hydrocarbons (Total)	kg/y	18	
Carbon Monoxide (Total)	kg/y	227	
NOx (Total)	kg/y	63	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:35 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Future AM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	SouthEast: Arthur St E														
4	L2	All MCs	881	0.0	881	0.0	0.474	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	51.2
5	T1	All MCs	12	0.0	12	0.0	2.000	2306.9	LOS F	9.8	68.5	1.00	1.40	2.99	1.5
Appro	ach		893	0.0	893	0.0	2.000	36.6	LOS C	9.8	68.5	0.01	0.59	0.04	33.3
North	West:	Arthur St	W												
11	T1	All MCs	11	0.0	11	0.0	1.460	1122.3	LOS F	9.1	63.4	1.00	1.51	3.49	2.9
12	R2	All MCs	6	0.0	6	0.0	1.460	1291.7	LOS F	9.1	63.4	1.00	1.51	3.49	2.4
Appro	ach		17	0.0	17	0.0	1.460	1182.1	LOS F	9.1	63.4	1.00	1.51	3.49	2.7
South	West:	Railway	St												
1	L2	All MCs	10	0.0	10	0.0	0.844	6.1	LOS A	0.0	0.0	0.00	0.57	0.00	50.1
3	R2	All MCs	1558	0.0	1558	0.0	0.844	6.0	LOS A	0.0	0.0	0.00	0.57	0.00	50.1
Appro	ach		1568	0.0	1568	0.0	0.844	6.0	NA	0.0	0.0	0.00	0.57	0.00	50.1
All Ve	hicles		2478	0.0	2478	0.0	2.000	25.1	NA	9.8	68.5	0.01	0.58	0.04	38.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:35 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue REV-SIDRA-2023-10-13.sip9

Site: 101 [Future PM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	49.0 1827.0 37.2 60.0 0.82 7.97 1.22	49.0 km/h 2192.4 pers-km/h 44.7 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	2237 2237 0.0 0.0 0.698 14.7 3206	2684 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	4.99 8.0 216.9 298.3 5.5 2.5 2.5 2.2 NA	5.98 pers-h/h 8.0 sec 298.3 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	2.0 13.7 0.01 1300 0.58 0.01 44.5	1560 pers/h 0.58 0.01 44.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1440.87 156.9 368.7 0.032 0.42 0.118	1440.87 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0%

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 98.5% 0.0% 0.0%

Intersection Performance - An	nual Values			
Performance Measure	Vehicles:	All MCs	Persons	
Demand Flows (Total)	veh/y	1,073,760	1,288,512 pers/y	

Delay (Total)	veh-h/y	2,394	2,872 pers-h/y
Effective Stops (Total)	veh/y	624,062	748,875 pers/y
Travel Distance (Total)	veh-km/y	876,967	1,052,361 pers-km/y
Travel Time (Total)	veh-h/y	17,879	21,455 pers-h/y
Cost (Total)	\$/y	691,615	691,615 \$/y
Fuel Consumption (Total)	L/y	75,317	
Carbon Dioxide (Total)	kg/y	176,996	
Hydrocarbons (Total)	kg/y	15	
Carbon Monoxide (Total)	kg/y	204	
NOx (Total)	kg/y	57	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 October 2023 8:52:57 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Future PM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	SouthEast: Arthur St E														
4	L2	All MCs	937	0.0	937	0.0	0.505	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	51.2
5	T1	All MCs	8	0.0	8	0.0	0.240	119.0	LOS F	0.7	4.6	0.98	1.00	1.02	20.0
Appro	ach		945	0.0	945	0.0	0.505	6.7	LOS A	0.7	4.6	0.01	0.58	0.01	50.3
North	West:	Arthur St	W												
11	T1	All MCs	10	0.0	10	0.0	0.698	135.6	LOS F	2.0	13.7	0.99	1.06	1.28	13.1
12	R2	All MCs	10	0.0	10	0.0	0.698	298.3	LOS F	2.0	13.7	0.99	1.06	1.28	11.0
Appro	ach		20	0.0	20	0.0	0.698	216.9	LOS F	2.0	13.7	0.99	1.06	1.28	12.0
South	West:	Railway	St												
1	L2	All MCs	8	0.0	8	0.0	0.685	5.7	LOS A	0.0	0.0	0.00	0.58	0.00	50.9
3	R2	All MCs	1264	0.0	1264	0.0	0.685	5.7	LOS A	0.0	0.0	0.00	0.58	0.00	50.8
Appro	ach		1272	0.0	1272	0.0	0.685	5.7	NA	0.0	0.0	0.00	0.58	0.00	50.8
All Ve	hicles		2237	0.0	2237	0.0	0.698	8.0	NA	2.0	13.7	0.01	0.58	0.02	49.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / IPC | Processed: Tuesday, 17 October 2023 8:52:57 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future AM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Intersection Performance - Hourly Values											
Vehicles:	All MCs	Persons									
km/h veh-km/h veh-h/h	46.7 1295.2 27.8	46.7 km/h 1554.2 pers-km/h 33.3 pers-h/h									
km/h	0.88 8.72										
veh/h veh/h % %	1277 1277 0.0 0.0 0.532	1532 pers/h									
% veh/h	59.7 2400										
veh-h/h sec	2.20 6.2 8.4	2.64 pers-h/h 6.2 sec									
sec sec sec sec sec	9.1 4.9 1.3 0.1 LOS A	9.1 sec									
veh	4.7										
m	32.8 0.03										
veh/h	0.55 0.48	850 pers/h 0.55 0.48 37.8									
	01.0	01.0									
\$/h L/h kg/h kg/h kg/h	1040.02 101.4 238.3 0.018 0.22 0.066	1040.02 \$/h									
	Vehicles: km/h veh-km/h veh-h/h km/h veh/h veh/h % veh/h veh/h weh/h veh/h weh/h veh/h % veh/h % kg/h kg/h	Vehicles: All MCs km/h 46.7 veh-km/h 1295.2 veh-h/h 27.8 km/h 52.7 0.88 8.72 1.13 111 veh/h 1277 veh/h 1277 veh/h 1277 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 59.7 veh/h 2400 veh/h 2400 veh/h 2.20 sec 6.2 sec 9.1 sec 9.1 sec 1.3 sec 0.1 LOS A Veh veh 4.7 m 32.8 0.03 0.48 37.8 37.8 \$/h 1040.02 L/h 101.4 kg/h 0.018									

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.2 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 1.9% 1.2% 0.6%

Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Persons							
Demand Flows (Total)	veh/y	612,960	735,552 pers/y							
Delay (Total)	veh-h/y	1,056	1,267 pers-h/y							

Effective Stops (Total)	veh/y	340,024	408,029 pers/y	
Travel Distance (Total)	veh-km/y	621,692	746,030 pers-km/y	
Travel Time (Total)	veh-h/y	13,325	15,990 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	499,211 48,672 114,379 9 107 32	499,211 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:37 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future AM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	217	0.0	217	0.0	0.296	6.0	LOS A	1.9	13.5	0.45	0.58	0.45	48.2
6	R2	All MCs	106	0.0	106	0.0	0.296	8.6	LOS A	1.9	13.5	0.45	0.58	0.45	47.7
Appro	bach		323	0.0	323	0.0	0.296	6.8	LOS A	1.9	13.5	0.45	0.58	0.45	48.1
North	: Swet	te St													
7	L2	All MCs	94	0.0	94	0.0	0.305	7.2	LOS A	1.9	13.2	0.61	0.67	0.61	46.5
9	R2	All MCs	179	0.0	179	0.0	0.305	9.1	LOS A	1.9	13.2	0.61	0.67	0.61	43.6
Appro	bach		273	0.0	273	0.0	0.305	8.4	LOS A	1.9	13.2	0.61	0.67	0.61	44.6
West	Chur	ch St W													
10	L2	All MCs	305	0.0	305	0.0	0.532	5.5	LOS A	4.7	32.8	0.44	0.50	0.44	45.0
11	T1	All MCs	376	0.0	376	0.0	0.532	4.7	LOS A	4.7	32.8	0.44	0.50	0.44	48.6
Appro	bach		681	0.0	681	0.0	0.532	5.0	LOS A	4.7	32.8	0.44	0.50	0.44	46.9
All Ve	hicles		1277	0.0	1277	0.0	0.532	6.2	LOS A	4.7	32.8	0.48	0.55	0.48	46.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:37 AM

Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future PM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	47.2 1175.0 24.9 53.2 0.89 8.75 1.13	47.2 km/h 1410.0 pers-km/h 29.8 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1158 1158 0.0 0.0 0.444 91.5 2609	1390 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	1.96 6.1 7.4 8.7 5.0 1.1 0.0 LOS A	2.35 pers-h/h 6.1 sec 8.7 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	3.3 23.3 0.02 634 0.55 0.43 32.8	761 pers/h 0.55 0.43 32.8							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	930.75 90.4 212.4 0.016 0.20 0.058	930.75 \$/h							

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.8 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.0% 0.6%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	555,840	667,008 pers/y						
Delay (Total)	veh-h/y	939	1,127 pers-h/y						

Effective Stops (Total)	veh/y	304,267	365,120 pers/y	
Travel Distance (Total)	veh-km/y	564,004	676,805 pers-km/y	
Travel Time (Total)	veh-h/y	11,938	14,326 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	446,759 43,379 101,941 8 97 28	446,759 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:39 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future PM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	421	0.0	421	0.0	0.444	6.0	LOS A	3.3	23.3	0.49	0.56	0.49	48.3
6	R2	All MCs	90	0.0	90	0.0	0.444	8.7	LOS A	3.3	23.3	0.49	0.56	0.49	47.8
Appro	bach		511	0.0	511	0.0	0.444	6.5	LOS A	3.3	23.3	0.49	0.56	0.49	48.2
North	: Swet	te St													
7	L2	All MCs	91	0.0	91	0.0	0.255	6.2	LOS A	1.5	10.4	0.48	0.62	0.48	47.1
9	R2	All MCs	168	0.0	168	0.0	0.255	8.1	LOS A	1.5	10.4	0.48	0.62	0.48	44.1
Appro	bach		259	0.0	259	0.0	0.255	7.4	LOS A	1.5	10.4	0.48	0.62	0.48	45.1
West	Chur	ch St W													
10	L2	All MCs	146	0.0	146	0.0	0.306	5.1	LOS A	2.1	14.4	0.32	0.48	0.32	45.3
11	T1	All MCs	242	0.0	242	0.0	0.306	4.3	LOS A	2.1	14.4	0.32	0.48	0.32	48.9
Appro	bach		388	0.0	388	0.0	0.306	4.6	LOS A	2.1	14.4	0.32	0.48	0.32	47.5
All Ve	hicles		1158	0.0	1158	0.0	0.444	6.1	LOS A	3.3	23.3	0.43	0.55	0.43	47.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:39 AM

Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue REV-SIDRA-2023-10-13.sip9

Site: 101 [Future AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Va	alues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	48.6 1195.3 24.6 60.0 0.81 7.88 1.24	2.4 km/h 1.0 ped-km/h 0.4 ped-h/h	47.9 km/h 1435.3 pers-km/h 29.9 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1175 1175 0.0 0.0 0.479 88.0 2455	50 ped/h 0.028	1460 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	4.03 12.4 21.0 21.0 4.2 8.2 5.4 LOS A	0.20 ped-h/h 14.5 sec 14.5 sec LOS B	5.04 pers-h/h 12.4 sec 21.0 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	3.6 25.3 0.03 832 0.71 0.69 37.7	43 ped/h 0.85 0.85 0.7	1041 pers/h 0.71 0.69 38.4
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	942.19 99.1 233.0 0.020 0.28 0.071	10.20 \$/h	952.39 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 6.2% 0.0% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons					
Demand Flows (Total)	veh/y	564,000	24,000 ped/y	700,800 pers/y					

Delay (Total)	veh-h/y	1,935	97 ped-h/y	2,418 pers-h/y
Effective Stops (Total)	veh/y	399,207	20,443 ped/y	499,491 pers/y
Travel Distance (Total)	veh-km/y	573,736	480 ped-km/y	688,964 pers-km/y
Travel Time (Total)	veh-h/y	11,814	199 ped-h/y	14,376 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	452,251 47,590 111,837 10 132 34	4,898 \$/y	457,149 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:40 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Future AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	140	0.0	140	0.0	0.411	6.8	LOS A	3.2	22.3	0.69	0.58	0.69	52.0
6	R2	All MCs	164	0.0	164	0.0	*0.411	15.0	LOS B	3.2	22.3	0.83	0.74	0.83	47.6
Appro	ach		304	0.0	304	0.0	0.411	11.2	LOS A	3.2	22.3	0.76	0.67	0.76	49.5
North	: Bach	ell Ave													
7	L2	All MCs	122	0.0	122	0.0	0.125	10.8	LOS A	1.2	8.6	0.53	0.70	0.53	49.1
9	R2	All MCs	200	0.0	200	0.0	*0.479	21.0	LOS B	3.6	25.3	0.91	0.79	0.91	43.2
Appro	ach		322	0.0	322	0.0	0.479	17.1	LOS B	3.6	25.3	0.77	0.76	0.77	45.3
West	Churc	ch St W													
10	L2	All MCs	394	0.0	394	0.0	0.343	7.4	LOS A	2.1	14.6	0.47	0.69	0.47	51.6
11	T1	All MCs	155	0.0	155	0.0	*0.454	17.1	LOS B	2.9	20.4	0.94	0.75	0.94	46.8
Appro	bach		549	0.0	549	0.0	0.454	10.2	LOS A	2.9	20.4	0.60	0.70	0.60	50.2
All Ve	hicles		1175	0.0	1175	0.0	0.479	12.4	LOS A	3.6	25.3	0.69	0.71	0.69	48.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance											
Mov	Input	Dem.	Aver.		AVERAGE		Prop.	Eff.	Travel	Travel	Aver.	
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. 3	Speed	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec	
East: Church	St E											
P2 Full	50	50	14.5	LOS B	0.0	0.0	0.85	0.85	29.9	20.0	0.67	
All Pedestrians	50	50	14.5	LOS B	0.0	0.0	0.85	0.85	29.9	20.0	0.67	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:40 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Future PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum Delay)

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
	km/h	44.1	2.6 km/h	43.7 km/h
Travel Speed (Average) Travel Distance (Total)	veh-km/h	44.1 1481.4	2.0 km/n 1.0 ped-km/h	43.7 km/n 1778.6 pers-km/h
Travel Time (Total)	veh-h/h	33.6	0.4 ped-h/h	40.7 pers-h/h
(<i>)</i>	km/h	60.0	0.4 ped-n/n	40.7 pers-n/n
Desired Speed	KIII/II	0.74		
Speed Efficiency Travel Time Index				
		7.06 1.36		
Congestion Coefficient		1.30		
Demand Flows (Total)	veh/h	1458	50 ped/h	1800 pers/h
Arrival Flows (Total)	veh/h	1458		
Percent Heavy Vehicles (Demand)	%	0.0		
Percent Heavy Vehicles (Arrivals)	%	0.0		
Degree of Saturation		0.754	0.012	
Practical Spare Capacity	%	19.4		
Effective Intersection Capacity	veh/h	1934		
Control Delay (Total)	veh-h/h	8.05	0.18 ped-h/h	9.84 pers-h/h
Control Delay (Average)	sec	19.9	12.7 sec	19.7 sec
Control Delay (Worst Lane by MC)	sec	30.4	12.1 300	10.7 300
Control Delay (Worst Movement by MC)	sec	30.4	12.7 sec	30.4 sec
Geometric Delay (Average)	sec	4.2	12.1 000	00.4 000
Stop-Line Delay (Average)	sec	15.7		
Idling Time (Average)	sec	11.4		
Intersection Level of Service (LOS)	000	LOS B	LOS B	
95% Back of Queue - Veh (Worst Lane)	veh	16.3		
95% Back of Queue - Dist (Worst Lane)	m	114.0		
Ave. Que Storage Ratio (Worst Lane)		0.05		
Effective Stops (Total)	veh/h	1146	33 ped/h	1407 pers/h
Effective Stop Rate		0.79	0.65	0.78
Proportion Queued		0.74	0.65	0.73
Performance Index		59.4	0.6	60.0
Cost (Total)	\$/h	1256.03	9.60 \$/h	1265.62 \$/h
Fuel Consumption (Total)	L/h	127.6	•	
Carbon Dioxide (Total)	kg/h	299.8		
Hydrocarbons (Total)	kg/h	0.026		
Carbon Monoxide (Total)	kg/h	0.35		
NOx (Total)	kg/h	0.091		

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 6.0% 3.5% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons					
Demand Flows (Total)	veh/y	699,840	24,000 ped/y	863,808 pers/y					

Delay (Total)	veh-h/y	3,864	85 ped-h/y	4,721 pers-h/y
Effective Stops (Total)	veh/y	549,853	15,633 ped/y	675,456 pers/y
Travel Distance (Total)	veh-km/y	711,053	480 ped-km/y	853,744 pers-km/y
Travel Time (Total)	veh-h/y	16,109	187 ped-h/y	19,518 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	602,893 61,235 143,903 13 168 44	4,606 \$/y	607,499 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:41 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [Future PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5	T1	All MCs	163	0.0	163	0.0	0.442	17.2	LOS B	4.7	32.8	0.84	0.67	0.84	45.0
6	R2	All MCs	75	0.0	75	0.0	*0.442	29.3	LOS C	4.7	32.8	0.91	0.73	0.91	42.1
Appro	ach		238	0.0	238	0.0	0.442	21.0	LOS B	4.7	32.8	0.86	0.69	0.86	44.1
North	: Bach	ell Ave													
7	L2	All MCs	165	0.0	165	0.0	0.133	11.3	LOS A	1.8	12.3	0.39	0.67	0.39	50.1
9	R2	All MCs	623	0.0	623	0.0	*0.754	23.7	LOS B	16.3	114.0	0.88	0.88	0.95	42.8
Appro	ach		788	0.0	788	0.0	0.754	21.1	LOS B	16.3	114.0	0.78	0.84	0.83	43.2
West	Churo	ch St W													
10	L2	All MCs	242	0.0	242	0.0	0.186	6.5	LOS A	1.0	7.1	0.27	0.62	0.27	52.3
11	T1	All MCs	190	0.0	190	0.0	*0.731	30.4	LOS C	6.0	41.7	1.00	0.90	1.20	40.0
Appro	ach		432	0.0	432	0.0	0.731	17.0	LOS B	6.0	41.7	0.59	0.74	0.68	46.1
All Ve	hicles		1458	0.0	1458	0.0	0.754	19.9	LOS B	16.3	114.0	0.74	0.79	0.79	44.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Noveme	ent Perf	ormand	e:							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Church	St E										
P2 Full	50	50	12.7	LOS B	0.1	0.1	0.65	0.65	28.1	20.0	0.71
All Pedestrians	50	50	12.7	LOS B	0.1	0.1	0.65	0.65	28.1	20.0	0.71

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:41 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future AM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 8:00-9:00am Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	44.8 1356.9 30.3 50.0 0.90 8.84 1.12	44.8 km/h 1628.3 pers-km/h 36.3 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1340 1340 0.0 0.0 0.496 61.4 2704	1608 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.35 6.3 15.9 15.9 4.5 1.8 1.0 NA	2.82 pers-h/h 6.3 sec 15.9 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	2.1 14.7 0.01 822 0.61 0.12 34.9	986 pers/h 0.61 0.12 34.9
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1114.86 101.5 238.5 0.017 0.19 0.060	1114.86 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 79.0% 0.0% 0.0%

Intersection Performance - Ann	Intersection Performance - Annual Values							
Performance Measure	Performance Measure Vehicles: All MCs Persons							
Demand Flows (Total)	veh/y	643,200	771,840 pers/y					

Delay (Total)	veh-h/y	1,126	1,352 pers-h/y
Effective Stops (Total)	veh/y	394,556	473,467 pers/y
Travel Distance (Total)	veh-km/y	651,329	781,595 pers-km/y
Travel Time (Total)	veh-h/y	14,538	17,446 pers-h/y
Cost (Total)	\$/y	535,131	535,131 \$/y
Fuel Consumption (Total)	L/y	48,718	
Carbon Dioxide (Total)	kg/y	114,487	
Hydrocarbons (Total)	kg/y	8	
Carbon Monoxide (Total)	kg/y	91	
NOx (Total)	kg/y	29	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:43 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future AM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 8:00-9:00am Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Railv	vay Stree	t Bridge	9											
1	L2	All MCs	207	0.0	207	0.0	0.422	4.7	LOS A	0.0	0.0	0.00	0.55	0.00	45.8
3	R2	All MCs	577	0.0	577	0.0	0.422	4.7	LOS A	0.0	0.0	0.00	0.55	0.00	45.6
Appro	ach		784	0.0	784	0.0	0.422	4.7	NA	0.0	0.0	0.00	0.55	0.00	45.6
East:	Churc	h St E													
4	L2	All MCs	363	0.0	363	0.0	0.195	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	45.9
Appro	ach		363	0.0	363	0.0	0.195	4.6	NA	0.0	0.0	0.00	0.53	0.00	45.9
West:	Churc	ch St W													
12	R2	All MCs	193	0.0	193	0.0	0.496	15.9	LOS B	2.1	14.7	0.82	1.04	1.20	40.0
Appro	ach		193	0.0	193	0.0	0.496	15.9	LOS B	2.1	14.7	0.82	1.04	1.20	40.0
All Ve	hicles		1340	0.0	1340	0.0	0.496	6.3	NA	2.1	14.7	0.12	0.61	0.17	44.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:43 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future PM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 4:45-5:45pm Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	44.4 1596.0 35.9 50.0 0.89 8.76 1.13	44.4 km/h 1915.2 pers-km/h 43.1 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1574 1574 0.0 0.0 0.670 19.4 2348	1889 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	3.11 7.1 22.7 22.7 4.5 2.6 1.6 NA	3.73 pers-h/h 7.1 sec 22.7 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	3.2 22.4 0.02 975 0.62 0.12 41.7	1170 pers/h 0.62 0.12 41.7
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1320.68 119.5 280.8 0.020 0.22 0.070	1320.68 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 83.0% 0.0% 0.0%

Intersection Performance - Ann	Intersection Performance - Annual Values							
Performance Measure	Performance Measure Vehicles: All MCs Persons							
Demand Flows (Total)	veh/y	755,520	906,624 pers/y					

Delay (Total)	veh-h/y	1,492	1,791 pers-h/y
Effective Stops (Total)	veh/y	468,045	561,654 pers/y
Travel Distance (Total)	veh-km/y	766,060	919,272 pers-km/y
Travel Time (Total)	veh-h/y	17,249	20,699 pers-h/y
Cost (Total)	\$/y	633,927	633,927 \$/y
Fuel Consumption (Total)	L/y	57,351	
Carbon Dioxide (Total)	kg/y	134,775	
Hydrocarbons (Total)	kg/y	10	
Carbon Monoxide (Total)	kg/y	107	
NOx (Total)	kg/y	34	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:44 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [Future PM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 4:45-5:45pm Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Railv	vay Stree	t Bridge	;											
1	L2	All MCs	351	0.0	351	0.0	0.354	4.7	LOS A	0.0	0.0	0.00	0.54	0.00	45.8
3	R2	All MCs	306	0.0	306	0.0	0.354	4.7	LOS A	0.0	0.0	0.00	0.54	0.00	45.6
Appro	ach		657	0.0	657	0.0	0.354	4.7	NA	0.0	0.0	0.00	0.54	0.00	45.7
East:	Churc	h St E													
4	L2	All MCs	705	0.0	705	0.0	0.380	4.7	LOS A	0.0	0.0	0.00	0.53	0.00	45.8
Appro	ach		705	0.0	705	0.0	0.380	4.7	NA	0.0	0.0	0.00	0.53	0.00	45.8
West:	Churc	ch St W													
12	R2	All MCs	212	0.0	212	0.0	0.670	22.7	LOS B	3.2	22.4	0.90	1.17	1.64	37.3
Appro	ach		212	0.0	212	0.0	0.670	22.7	LOS B	3.2	22.4	0.90	1.17	1.64	37.3
All Ve	hicles		1574	0.0	1574	0.0	0.670	7.1	NA	3.2	22.4	0.12	0.62	0.22	44.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:44 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [DEV-BACHELL AVE-DRIVEWAY-AM2 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	52.8 1095.1 20.7 60.0 0.88 8.68 1.14	52.8 km/h 1314.1 pers-km/h 24.9 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1058 1058 0.0 0.388 118.9 2724	1269 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	1.79 6.1 8.8 11.9 5.4 0.7 0.0 LOS A	2.15 pers-h/h 6.1 sec 11.9 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	3.0 21.1 0.02 557 0.53 0.27 29.5	669 pers/h 0.53 0.27 29.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	946.48 85.3 200.5 0.017 0.24 0.060	946.48 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.3 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.7% 0.9%

Intersection Performance - Annual Values							
Performance Measure	Vehicles:	All MCs	Persons				
Demand Flows (Total)	veh/y	507,790	609,347 pers/y				
Delay (Total)	veh-h/y	860	1,032 pers-h/y				

Effective Stops (Total)	veh/y	267,480	320,976 pers/y	
Travel Distance (Total)	veh-km/y	525,637	630,764 pers-km/y	
Travel Time (Total)	veh-h/y	9,946	11,935 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	454,312 40,957 96,248 8 114 29	454,312 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 11:17:55 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [DEV-BACHELL AVE-DRIVEWAY-AM2 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	F			rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: SITE		VAY												
1	L2	All MCs	83	0.0	83	0.0	0.090	5.2	LOS A	0.5	3.4	0.46	0.56	0.46	53.0
2	T1	All MCs	1	0.0	1	0.0	0.090	5.4	LOS A	0.5	3.4	0.46	0.56	0.46	53.4
3	R2	All MCs	13	0.0	13	0.0	0.090	10.0	LOS B	0.5	3.4	0.46	0.56	0.46	52.5
Appro	bach		97	0.0	97	0.0	0.090	5.8	LOS A	0.5	3.4	0.46	0.56	0.46	53.0
East:	BACH	IELL AVE	NUE												
4	L2	All MCs	41	0.0	41	0.0	0.293	5.6	LOS A	1.7	12.1	0.50	0.53	0.50	52.7
5	T1	All MCs	277	0.0	277	0.0	0.293	5.8	LOS A	1.7	12.1	0.50	0.53	0.50	53.0
6	R2	All MCs	1	0.0	1	0.0	0.293	10.5	LOS B	1.7	12.1	0.50	0.53	0.50	52.2
Appro	bach		319	0.0	319	0.0	0.293	5.8	LOS A	1.7	12.1	0.50	0.53	0.50	53.0
North	: RAW	SON ST	REET												
7	L2	All MCs	1	0.0	1	0.0	0.004	7.1	LOS A	0.0	0.1	0.61	0.56	0.61	51.2
8	T1	All MCs	1	0.0	1	0.0	0.004	7.3	LOS A	0.0	0.1	0.61	0.56	0.61	51.6
9	R2	All MCs	1	0.0	1	0.0	0.004	11.9	LOS B	0.0	0.1	0.61	0.56	0.61	50.8
Appro	bach		3	0.0	3	0.0	0.004	8.8	LOS A	0.0	0.1	0.61	0.56	0.61	51.2
West	BACH	HELL AVE	NUE												
10	L2	All MCs	1	0.0	1	0.0	0.388	3.9	LOS A	3.0	21.1	0.12	0.52	0.12	52.8
11	T1	All MCs	340	0.0	340	0.0	0.388	4.1	LOS A	3.0	21.1	0.12	0.52	0.12	53.2
12	R2	All MCs	298	0.0	298	0.0	0.388	8.7	LOS A	3.0	21.1	0.12	0.52	0.12	52.3
Appro	bach		639	0.0	639	0.0	0.388	6.3	LOS A	3.0	21.1	0.12	0.52	0.12	52.8
All Ve	hicles		1058	0.0	1058	0.0	0.388	6.1	LOS A	3.0	21.1	0.27	0.53	0.27	52.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 11:17:55 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [DEV-BACHELL AVE-DRIVEWAY-PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Values							
Performance Measure	Vehicles:	All MCs	Persons				
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	52.7 1305.4 24.8 60.0 0.88 8.66 1.14	52.7 km/h 1566.5 pers-km/h 29.7 pers-h/h				
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1267 1267 0.0 0.0 0.443 92.0 2862	1521 pers/h				
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.13 6.1 8.5 12.5 4.6 1.4 0.2 LOS A	2.56 pers-h/h 6.1 sec 12.5 sec				
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	3.3 22.8 0.02 655 0.52 0.44 36.5	786 pers/h 0.52 0.44 36.5				
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1132.21 102.5 240.9 0.020 0.29 0.073	1132.21 \$/h				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.8 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 3.0% 1.7% 0.9%

Intersection Performance - Annual Values							
Performance Measure	Vehicles:	All MCs	Persons				
Demand Flows (Total)	veh/y	608,337	730,004 pers/y				
Delay (Total)	veh-h/y	1,024	1,228 pers-h/y				

Effective Stops (Total)	veh/y	314,381	377,257 pers/y	
Travel Distance (Total)	veh-km/y	626,604	751,924 pers-km/y	
Travel Time (Total)	veh-h/y	11,881	14,257 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	543,463 49,212 115,647 10 138 35	543,463 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 11:17:58 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [DEV-BACHELL AVE-DRIVEWAY-PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Roundabout

Vehi	cle Mo	ovement	: Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: SITE	DRIVEV	/AY												
1	L2	All MCs	271	0.0	271	0.0	0.379	7.7	LOS A	2.5	17.8	0.74	0.69	0.74	51.4
2	T1	All MCs	1	0.0	1	0.0	0.379	7.8	LOS A	2.5	17.8	0.74	0.69	0.74	51.8
3	R2	All MCs	54	0.0	54	0.0	0.379	12.5	LOS B	2.5	17.8	0.74	0.69	0.74	50.9
Appro	bach		325	0.0	325	0.0	0.379	8.5	LOS A	2.5	17.8	0.74	0.69	0.74	51.4
East:	BACH	IELL AVE	NUE												
4	L2	All MCs	28	0.0	28	0.0	0.443	4.6	LOS A	3.3	22.8	0.39	0.44	0.39	53.1
5	T1	All MCs	566	0.0	566	0.0	0.443	4.8	LOS A	3.3	22.8	0.39	0.44	0.39	53.5
6	R2	All MCs	1	0.0	1	0.0	0.443	9.5	LOS A	3.3	22.8	0.39	0.44	0.39	52.6
Appro	bach		596	0.0	596	0.0	0.443	4.8	LOS A	3.3	22.8	0.39	0.44	0.39	53.5
North	: RAW	SON STR	REET												
7	L2	All MCs	1	0.0	1	0.0	0.003	5.6	LOS A	0.0	0.1	0.48	0.52	0.48	52.1
8	T1	All MCs	1	0.0	1	0.0	0.003	5.7	LOS A	0.0	0.1	0.48	0.52	0.48	52.4
9	R2	All MCs	1	0.0	1	0.0	0.003	10.4	LOS B	0.0	0.1	0.48	0.52	0.48	51.6
Appro	bach		3	0.0	3	0.0	0.003	7.2	LOS A	0.0	0.1	0.48	0.52	0.48	52.0
West	BACH	HELL AVE	NUE												
10	L2	All MCs	1	0.0	1	0.0	0.240	4.1	LOS A	1.6	11.5	0.24	0.48	0.24	52.8
11	T1	All MCs	224	0.0	224	0.0	0.240	4.3	LOS A	1.6	11.5	0.24	0.48	0.24	53.1
12	R2	All MCs	118	0.0	118	0.0	0.240	8.9	LOS A	1.6	11.5	0.24	0.48	0.24	52.3
Appro	bach		343	0.0	343	0.0	0.240	5.9	LOS A	1.6	11.5	0.24	0.48	0.24	52.8
All Ve	hicles		1267	0.0	1267	0.0	0.443	6.1	LOS A	3.3	22.8	0.44	0.52	0.44	52.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 11:17:58 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

APPENDIX C

EXISTING PLUS BACKGROUND TRAFFIC GROWTH 2032

Site: 2785 [EX+BTG 2032 AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times) Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	8.5 3374.5 395.6 60.0 0.14 0.47 7.03	8.5 km/h 4049.4 pers-km/h 474.8 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	2753 2753 0.0 0.0 1.423 -36.8 1934	3303 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	338.34 442.5 827.2 839.5 1.1 441.4 420.3 LOS F ¹¹	406.01 pers-h/h 442.5 sec 839.5 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	407.9 2855.2 2.33 6211 2.26 0.83 714.3	7454 pers/h 2.26 0.83 714.3
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	13197.84 706.1 1659.4 0.176 1.28 0.359	13197.84 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 6.4% 0.0% 0.0%

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						

Demand Flows (Total)	veh/y	1,321,344	1,585,613 pers/y
Delay (Total)	veh-h/y	162,404	194,885 pers-h/y
Effective Stops (Total)	veh/y	2,981,447	3,577,736 pers/y
Travel Distance (Total)	veh-km/y	1,619,745	1,943,694 pers-km/y
Travel Time (Total)	veh-h/y	189,908	227,889 pers-h/y
Cost (Total)	\$/y	6,334,963	6,334,963 \$/y
Fuel Consumption (Total)	L/y	338,932	
Carbon Dioxide (Total)	kg/y	796,490	
Hydrocarbons (Total)	kg/y	85	
Carbon Monoxide (Total)	kg/y	613	
NOx (Total)	kg/y	172	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:47 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [EX+BTG 2032 AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times) Design Life Analysis (Final Year): Results for 10 years

Vehi	cle Mo	ovement	Perfo	rmai	nce										
Mov ID		Mov Class	Dem Fl	nand Iows HV]	Ar	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Railwa	ay St E													
5	T1	All MCs	827	0.0	827	0.0	0.340	16.3	LOS B	15.0	105.1	0.55	0.48	0.55	49.4
6	R2	All MCs	162	0.0	162	0.0	*0.692	81.5	LOS F ¹¹	11.9	83.1	1.00	0.81	1.04	25.2
Appro	bach		989	0.0	989	0.0	0.692	27.0	LOS B	15.0	105.1	0.62	0.54	0.63	43.7
North	: Chur	ch St													
7	L2	All MCs	256	0.0	256	0.0	0.331	42.6	LOS D	12.3	85.9	0.71	0.78	0.71	36.8
9	R2	All MCs	58	0.0	58	0.0	0.047	48.1	LOS D	2.8	19.4	0.71	0.71	0.71	38.0
Appro	bach		313	0.0	313	0.0	0.331	43.6	LOS D	12.3	85.9	0.71	0.76	0.71	34.8
West:	Railw	ay St W													
10	L2	All MCs	53	0.0	53	0.0	* 1.423	839.5	LOS F ¹¹	23.5	164.8	1.00	1.88	4.75	4.9
11	T1	All MCs	1398	0.0	1398	0.0	* 1.423	810.7	LOS F ¹¹	407.9	2855.2	1.00	3.82	4.61	5.1
Appro	bach		1451	0.0	1451	0.0	1.423	811.8	LOS F ¹¹	407.9	2855.2	1.00	3.75	4.61	5.1
All Ve	hicles		2753	0.0	2753	0.0	1.423	442.5	LOS F ¹¹	407.9	2855.2	0.83	2.26	2.74	8.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:47 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [EX+BTG 2032 PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times) Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	17.3 3401.2 196.6 60.0 0.29 2.09 3.47	17.3 km/h 4081.4 pers-km/h 235.9 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	2818 2818 0.0 0.0 1.169 -23.0 2411	3381 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	138.67 177.2 363.3 377.2 1.5 175.7 162.3 LOS F ¹¹	166.41 pers-h/h 177.2 sec 377.2 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	213.2 1492.6 1.22 3955 1.40 0.82 391.5	4746 pers/h 1.40 0.82 391.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	6680.86 437.9 1029.1 0.101 0.95 0.251	6680.86 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 6.9% 0.0% 0.0%

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						

Demand Flows (Total)	veh/y	1,352,448	1,622,938 pers/y
Delay (Total)	veh-h/y	66,563	79,875 pers-h/y
Effective Stops (Total)	veh/y	1,898,428	2,278,114 pers/y
Travel Distance (Total)	veh-km/y	1,632,578	1,959,093 pers-km/y
Travel Time (Total)	veh-h/y	94,369	113,243 pers-h/y
Cost (Total)	\$/y	3,206,811	3,206,811 \$/y
Fuel Consumption (Total)	L/y	210,207	
Carbon Dioxide (Total)	kg/y	493,985	
Hydrocarbons (Total)	kg/y	48	
Carbon Monoxide (Total)	kg/y	458	
NOx (Total)	kg/y	121	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:48 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 2785 [EX+BTG 2032 PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site User-Given Phase Times) Design Life Analysis (Final Year): Results for 10 years

Vehi	/ehicle Movement Performance														
Mov ID		Mov Class	Dem Fl	nand Iows HV]	Ar	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Railwa	ay St E													
5	T1	All MCs	904	0.0	904	0.0	0.372	16.7	LOS B	16.8	117.6	0.56	0.50	0.56	49.2
6	R2	All MCs	234	0.0	234	0.0	* 1.000	124.6	LOS F ¹¹	22.7	158.7	1.00	1.14	1.71	19.5
Appro	bach		1138	0.0	1138	0.0	1.000	38.9	LOS C	22.7	158.7	0.65	0.63	0.80	38.9
North	: Chur	ch St													
7	L2	All MCs	407	0.0	407	0.0	0.546	58.1	LOS E ¹¹	21.9	153.4	0.80	0.82	0.80	35.4
9	R2	All MCs	91	0.0	91	0.0	0.075	60.2	LOS E ¹¹	4.4	31.1	0.72	0.72	0.72	37.8
Appro	bach		498	0.0	498	0.0	0.546	58.5	LOS E ¹¹	21.9	153.4	0.79	0.80	0.79	30.6
West:	Railw	ay St W													
10	L2	All MCs	32	0.0	32	0.0	* 1.169	377.2	LOS F ¹¹	9.6	67.1	1.00	1.50	3.19	9.4
11	T1	All MCs	1150	0.0	1150	0.0	* 1.169	359.8	LOS F ¹¹	213.2	1492.6	1.00	2.43	2.83	10.4
Appro	bach		1182	0.0	1182	0.0	1.169	360.3	LOS F ¹¹	213.2	1492.6	1.00	2.40	2.84	10.4
All Ve	hicles		2818	0.0	2818	0.0	1.169	177.2	LOS F ¹¹	213.2	1492.6	0.82	1.40	1.65	17.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:48 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 AM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way) Design Life Analysis (Final Year): Results for 10 years

Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	25.5	25.5 km/h
Fravel Distance (Total)	veh-km/h	2348.0	2817.5 pers-km/h
Fravel Time (Total)	veh-h/h	92.2	110.7 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency	•	0.42	
Fravel Time Index		3.60	
Congestion Coefficient		2.36	
5			
emand Flows (Total)	veh/h	2874	3449 pers/h
Arrival Flows (Total)	veh/h	2874	-
ercent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		3.400	
Practical Spare Capacity	%	-76.5	
ffective Intersection Capacity	veh/h	845	
Control Delay (Total)	veh-h/h	44.73	53.68 pers-h/h
Control Delay (Average)	sec	56.0	56.0 sec
Control Delay (Worst Lane by MC)	sec	4590.4	
ontrol Delay (Worst Movement by MC)	sec	4690.3	4690.3 sec
Geometric Delay (Average)	sec	4.3	
top-Line Delay (Average)	sec	51.8	
lling Time (Average)	sec	46.0	
tersection Level of Service (LOS)		NA	
		40.0	
5% Back of Queue - Veh (Worst Lane)	veh	19.9	
5% Back of Queue - Dist (Worst Lane)	m	139.6	
ve. Que Storage Ratio (Worst Lane)		0.11	
Effective Stops (Total)	veh/h	1496	1796 pers/h
Effective Stop Rate		0.52	0.52
Proportion Queued		0.01	0.01
erformance Index		113.2	113.2
	¢ /b	2010.04	2010 04 0/1
Cost (Total)	\$/h	3218.94	3218.94 \$/h
uel Consumption (Total)	L/h	228.1	
Carbon Dioxide (Total)	kg/h	536.0	
lydrocarbons (Total)	kg/h	0.045	
Carbon Monoxide (Total) NOx (Total)	kg/h kg/h	0.38 0.122	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 99.7% 0.0% 0.0%

Intersection Performance - Annual Va	lues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	1,379,520	1,655,424 pers/y
Delay (Total)	veh-h/y	21,472	25,766 pers-h/y
Effective Stops (Total)	veh/y	718,313	861,975 pers/y
Travel Distance (Total)	veh-km/y	1,127,018	1,352,422 pers-km/y
Travel Time (Total)	veh-h/y	44,275	53,130 pers-h/y
Cost (Total)	\$/y	1,545,093	1,545,093 \$/y
Fuel Consumption (Total)	L/y	109,473	
Carbon Dioxide (Total)	kg/y	257,261	
Hydrocarbons (Total)	kg/y	22	
Carbon Monoxide (Total)	kg/y	185	
NOx (Total)	kg/y	59	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:50 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 AM: Railway St/Arthur St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way) Decign Life Anglysis (Einel Year): Peop

Design Life Analysis (Final Year): Results for 10 years

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East: /	Arthur St	E												
4	L2	All MCs	983	0.0	983	0.0	0.529	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	51.1
5	T1	All MCs	14	0.0	14	0.0	2.400	2726.0	LOS F ¹¹	12.4	86.9	1.00	1.50	3.64	1.3
Appro	ach		997	0.0	997	0.0	2.400	45.0	LOS D	12.4	86.9	0.01	0.59	0.05	30.4
North	West:	Arthur St	W												
11	T1	All MCs	13	0.0	13	0.0	3.400	4690.3	LOS F ¹¹	19.9	139.6	1.00	1.59	4.10	0.8
12	R2	All MCs	7	0.0	7	0.0	3.400	4407.1	LOS F ¹¹	19.9	139.6	1.00	1.59	4.10	0.6
Appro	ach		20	0.0	20	0.0	3.400	4590.4	LOS F ¹¹	19.9	139.6	1.00	1.59	4.10	0.7
South	West:	Railway	St												
1	L2	All MCs	12	0.0	12	0.0	1.000	12.1	LOS A	0.0	0.0	0.00	0.47	0.00	38.7
3	R2	All MCs	1844	0.0	1844	0.0	1.000	12.1	LOS A	0.0	0.0	0.00	0.47	0.00	38.7
Appro	ach		1856	0.0	1856	0.0	1.000	12.1	NA	0.0	0.0	0.00	0.47	0.00	38.7
All Ve	hicles		2874	0.0	2874	0.0	3.400	56.0	NA	19.9	139.6	0.01	0.52	0.05	25.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:50 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 PM: Railway St/Arthur St Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way) Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Va			
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	34.8	34.8 km/h
Travel Distance (Total)	veh-km/h	2127.9	2553.4 pers-km/h
Travel Time (Total)	veh-h/h	61.1	73.4 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency		0.58	
Travel Time Index		5.33	
Congestion Coefficient		1.72	
Demand Flows (Total)	veh/h	2605	3126 pers/h
Arrival Flows (Total)	veh/h	2605	0120 persiti
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation	70	2.282	
Practical Spare Capacity	%	-64.9	
Effective Intersection Capacity	veh/h	1142	
	Ven/II	1142	
Control Delay (Total)	veh-h/h	23.44	28.13 pers-h/h
Control Delay (Average)	sec	32.4	32.4 sec
Control Delay (Worst Lane by MC)	sec	2516.3	
Control Delay (Worst Movement by MC)	sec	2594.9	2594.9 sec
Geometric Delay (Average)	sec	5.4	
Stop-Line Delay (Average)	sec	26.9	
Idling Time (Average)	sec	26.3	
Intersection Level of Service (LOS)		NA	
EV Back of Queue Veb (Marst Lana)	voh	19.0	
95% Back of Queue - Veh (Worst Lane)	veh	133.2	
95% Back of Queue - Dist (Worst Lane)	m	0.11	
Ave. Que Storage Ratio (Worst Lane)	veh/h	0.11 1529	1925 para/b
Effective Stops (Total)	veh/h		1835 pers/h
Effective Stop Rate		0.59	0.59
Proportion Queued		0.01	0.01
Performance Index		84.2	84.2
Cost (Total)	\$/h	2246.35	2246.35 \$/h
Fuel Consumption (Total)	L/h	202.9	·
Carbon Dioxide (Total)	kg/h	476.8	
Hydrocarbons (Total)	kg/h	0.043	
Carbon Monoxide (Total)	kg/h	0.51	
NOx (Total)	kg/h	0.141	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 99.5% 0.0% 0.0%

Intersection Performance - Annual Va	lues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	1,250,496	1,500,595 pers/y
Delay (Total)	veh-h/y	11,250	13,500 pers-h/y
Effective Stops (Total)	veh/y	733,944	880,732 pers/y
Travel Distance (Total)	veh-km/y	1,021,376	1,225,651 pers-km/y
Travel Time (Total)	veh-h/y	29,351	35,221 pers-h/y
Cost (Total)	\$/y	1,078,248	1,078,248 \$/y
Fuel Consumption (Total)	L/y	97,386	
Carbon Dioxide (Total)	kg/y	228,858	
Hydrocarbons (Total)	kg/y	20	
Carbon Monoxide (Total)	kg/y	246	
NOx (Total)	kg/y	68	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:51 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 PM: Railway St/Arthur St Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None) Stop (Two-Way) Decign Life Applysis (Final Year): Posu

Design Life Analysis (Final Year): Results for 10 years

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	Arthur St	E												
4	L2	All MCs	1096	0.0	1096	0.0	0.590	5.8	LOS A	0.0	0.0	0.00	0.57	0.00	51.1
5	T1	All MCs	10	0.0	10	0.0	1.052	929.6	LOS F ¹¹	3.7	25.7	1.00	1.15	1.73	3.7
Appro	bach		1105	0.0	1105	0.0	1.052	13.8	LOS A	3.7	25.7	0.01	0.58	0.02	44.8
North	West:	Arthur St	W												
11	T1	All MCs	12	0.0	12	0.0	2.282	2437.6	LOS F ¹¹	19.0	133.2	1.00	1.81	4.95	1.4
12	R2	All MCs	12	0.0	12	0.0	2.282	2594.9	LOS F ¹¹	19.0	133.2	1.00	1.81	4.95	1.1
Appro	bach		24	0.0	24	0.0	2.282	2516.3	LOS F ¹¹	19.0	133.2	1.00	1.81	4.95	1.3
South	West:	Railway	St												
1	L2	All MCs	13	0.0	13	0.0	0.795	5.9	LOS A	0.0	0.0	0.00	0.57	0.00	50.5
3	R2	All MCs	1463	0.0	1463	0.0	0.795	5.9	LOS A	0.0	0.0	0.00	0.57	0.00	50.4
Appro	bach		1476	0.0	1476	0.0	0.795	5.9	NA	0.0	0.0	0.00	0.57	0.00	50.4
All Ve	hicles		2605	0.0	2605	0.0	2.282	32.4	NA	19.0	133.2	0.01	0.59	0.05	34.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:51 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 AM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Va	alues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	46.2 1322.1 28.6 52.4 0.88 8.68 1.13	46.2 km/h 1586.5 pers-km/h 34.3 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1303 1303 0.0 0.530 60.3 2457	1564 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.42 6.7 7.5 8.9 5.2 1.5 0.0 LOS A	2.91 pers-h/h 6.7 sec 8.9 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	4.4 31.0 0.02 763 0.59 0.54 38.9	915 pers/h 0.59 0.54 38.9
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1068.78 103.2 242.6 0.019 0.22 0.066	1068.78 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.3 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.6% 1.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	625,536	750,643 pers/y						

Delay (Total)	veh-h/y	1,163	1,396 pers-h/y
Effective Stops (Total)	veh/y	366,107	439,329 pers/y
Travel Distance (Total)	veh-km/y	634,605	761,526 pers-km/y
Travel Time (Total)	veh-h/y	13,728	16,474 pers-h/y
Cost (Total)	\$/y	513,013	513,013 \$/y
Fuel Consumption (Total)	L/y	49,546	
Carbon Dioxide (Total)	kg/y	116,434	
Hydrocarbons (Total)	kg/y	9	
Carbon Monoxide (Total)	kg/y	107	
NOx (Total)	kg/y	32	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:52 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 AM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Design Life Analysis (Final Year): Results for 10 years

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5	T1	All MCs	194	0.0	194	0.0	0.349	6.3	LOS A	2.3	16.4	0.50	0.61	0.50	47.9
6	R2	All MCs	178	0.0	178	0.0	0.349	8.9	LOS A	2.3	16.4	0.50	0.61	0.50	47.4
Appro	bach		372	0.0	372	0.0	0.349	7.5	LOS A	2.3	16.4	0.50	0.61	0.50	47.7
North	: Swet	e St													
7	L2	All MCs	110	0.0	110	0.0	0.317	6.3	LOS A	2.1	14.4	0.53	0.62	0.53	47.0
9	R2	All MCs	211	0.0	211	0.0	0.317	8.2	LOS A	2.1	14.4	0.53	0.62	0.53	44.0
Appro	bach		322	0.0	322	0.0	0.317	7.5	LOS A	2.1	14.4	0.53	0.62	0.53	45.0
West	: Churo	ch St W													
10	L2	All MCs	366	0.0	366	0.0	0.530	6.1	LOS A	4.4	31.0	0.56	0.55	0.56	44.7
11	T1	All MCs	244	0.0	244	0.0	0.530	5.3	LOS A	4.4	31.0	0.56	0.55	0.56	48.2
Appro	bach		610	0.0	610	0.0	0.530	5.8	LOS A	4.4	31.0	0.56	0.55	0.56	46.0
All Ve	hicles		1303	0.0	1303	0.0	0.530	6.7	LOS A	4.4	31.0	0.54	0.59	0.54	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:52 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 PM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Va	lues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index	km/h veh-km/h veh-h/h km/h	46.7 1140.3 24.4 52.9 0.88 8.69	46.7 km/h 1368.4 pers-km/h 29.3 pers-h/h
Congestion Coefficient	veh/h	1.13	40.40 m cm //c
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h % % % veh/h	1123 1123 0.0 0.0 0.404 110.5 2781	1348 pers/h
Control Delay (Total)	veh-h/h	2.06	2.48 pers-h/h
Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	sec sec sec sec sec sec sec	6.6 7.3 8.9 5.3 1.3 0.0 LOS A	6.6 sec 8.9 sec
95% Back of Queue - Veh (Worst Lane)	veh	2.8	
95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	m veh/h	19.9 0.02 649 0.58 0.48 32.5	779 pers/h 0.58 0.48 32.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	913.50 88.5 208.1 0.016 0.19 0.057	913.50 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.1% 0.7%

Intersection Performance - Annual Values										
Performance Measure	Performance Measure Vehicles: All MCs Persons									
Demand Flows (Total)	veh/y	539,136	646,963 pers/y							

Delay (Total)	veh-h/y	991	1,189 pers-h/y
Effective Stops (Total)	veh/y	311,565	373,878 pers/y
Travel Distance (Total)	veh-km/y	547,342	656,810 pers-km/y
Travel Time (Total)	veh-h/y	11,722	14,067 pers-h/y
Cost (Total)	\$/y	438,482	438,482 \$/y
Fuel Consumption (Total)	L/y	42,504	
Carbon Dioxide (Total)	kg/y	99,884	
Hydrocarbons (Total)	kg/y	8	
Carbon Monoxide (Total)	kg/y	93	
NOx (Total)	kg/y	27	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:53 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 PM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Design Life Analysis (Final Year): Results for 10 years

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5	T1	All MCs	265	0.0	265	0.0	0.404	6.3	LOS A	2.8	19.9	0.51	0.60	0.51	48.0
6	R2	All MCs	176	0.0	176	0.0	0.404	8.9	LOS A	2.8	19.9	0.51	0.60	0.51	47.5
Appro	bach		442	0.0	442	0.0	0.404	7.3	LOS A	2.8	19.9	0.51	0.60	0.51	47.8
North	: Swet	e St													
7	L2	All MCs	104	0.0	104	0.0	0.287	5.9	LOS A	1.8	12.5	0.46	0.61	0.46	47.2
9	R2	All MCs	202	0.0	202	0.0	0.287	7.8	LOS A	1.8	12.5	0.46	0.61	0.46	44.1
Appro	bach		306	0.0	306	0.0	0.287	7.2	LOS A	1.8	12.5	0.46	0.61	0.46	45.1
West	: Churo	ch St W													
10	L2	All MCs	175	0.0	175	0.0	0.337	5.8	LOS A	2.3	15.8	0.46	0.53	0.46	45.0
11	T1	All MCs	200	0.0	200	0.0	0.337	5.0	LOS A	2.3	15.8	0.46	0.53	0.46	48.5
Appro	bach		376	0.0	376	0.0	0.337	5.4	LOS A	2.3	15.8	0.46	0.53	0.46	46.8
All Ve	hicles		1123	0.0	1123	0.0	0.404	6.6	LOS A	2.8	19.9	0.48	0.58	0.48	46.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:53 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Va	alues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	47.8 1132.9 23.7 60.0 0.80 7.74 1.26	2.1 km/h 1.2 ped-km/h 0.6 ped-h/h	46.9 km/h 1360.7 pers-km/h 29.0 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1115 1115 0.1 0.446 101.7 2498	60 ped/h 0.042	1398 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	4.29 13.9 23.7 23.7 3.5 10.4 7.5 LOS A	0.32 ped-h/h 19.4 sec 19.4 sec LOS B	5.47 pers-h/h 14.1 sec 23.7 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	5.1 35.6 0.04 768 0.69 0.68 49.8	53 ped/h 0.88 0.88 0.9	975 pers/h 0.70 0.68 50.7
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	903.91 93.9 220.7 0.019 0.26 0.072	14.27 \$/h	918.17 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 5.5% 4.0% 0.0%

Intersection Performance - Annual Values											
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons							
Demand Flows (Total)	veh/y	535,104	28,800 ped/y	670,925 pers/y							

Delay (Total)	veh-h/y	2,060	155 ped-h/y	2,627 pers-h/y
Effective Stops (Total)	veh/y	368,713	25,408 ped/y	467,863 pers/y
Travel Distance (Total)	veh-km/y	543,812	576 ped-km/y	653,150 pers-km/y
Travel Time (Total)	veh-h/y	11,377	278 ped-h/y	13,930 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	433,875 45,075 105,943 9 125 34	6,847 \$/y	440,722 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:54 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:30-8:30am

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 10 years

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5	T1	All MCs	168	0.1	168	0.1	0.356	7.2	LOS A	3.6	25.2	0.66	0.57	0.66	51.3
6	R2	All MCs	122	0.1	122	0.1	*0.356	17.3	LOS B	3.6	25.2	0.76	0.69	0.76	47.4
Appro	bach		290	0.1	290	0.1	0.356	11.5	LOS A	3.6	25.2	0.70	0.62	0.70	49.6
North	: Bach	ell Ave													
7	L2	All MCs	120	0.1	120	0.1	0.135	13.4	LOS A	1.6	11.5	0.58	0.71	0.58	47.5
9	R2	All MCs	196	0.1	196	0.1	*0.439	23.7	LOS B	4.2	29.8	0.90	0.79	0.90	41.8
Appro	bach		316	0.1	316	0.1	0.439	19.8	LOS B	4.2	29.8	0.78	0.76	0.78	43.8
West	: Churo	ch St W													
10	L2	All MCs	265	0.0	265	0.0	0.216	6.9	LOS A	1.3	9.0	0.35	0.65	0.35	52.0
11	T1	All MCs	244	0.0	244	0.0	*0.446	16.6	LOS B	5.1	35.6	0.87	0.72	0.87	47.2
Appro	bach		509	0.0	509	0.0	0.446	11.5	LOS A	5.1	35.6	0.60	0.68	0.60	49.6
All Ve	hicles		1115	0.1	1115	0.1	0.446	13.9	LOS A	5.1	35.6	0.68	0.69	0.68	47.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance												
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.		
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed		
	ped/h	ped/h	sec		ped	m			sec	m	m/sec		
East: Church	St E												
P2 Full	50	60	19.4	LOS B	0.1	0.1	0.88	0.88	34.8	20.0	0.57		
All Pedestrians	50	60	19.4	LOS B	0.1	0.1	0.88	0.88	34.8	20.0	0.57		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:54 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Va	alues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	45.3 1345.6 29.7 60.0 0.76 7.28 1.32	2.4 km/h 1.2 ped-km/h 0.5 ped-h/h	44.7 km/h 1615.9 pers-km/h 36.2 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1325 1325 0.0 0.0 0.750 20.0 1766	60 ped/h 0.023	1650 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	6.60 17.9 24.7 24.7 3.8 14.2 10.5 LOS B	0.25 ped-h/h 15.2 sec 15.2 sec LOS B	8.17 pers-h/h 17.8 sec 24.7 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	12.0 84.0 0.05 1043 0.79 0.77 68.1	47 ped/h 0.78 0.78 0.8	1299 pers/h 0.79 0.77 68.9
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1127.78 115.4 271.1 0.024 0.32 0.084	12.56 \$/h	1140.34 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 4.7% 0.0% 0.0%

Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons						
Demand Flows (Total)	veh/y	635,904	28,800 ped/y	791,885 pers/y						

Delay (Total)	veh-h/y	3,168	122 ped-h/y	3,923 pers-h/y
Effective Stops (Total)	veh/y	500,787	22,520 ped/y	623,464 pers/y
Travel Distance (Total)	veh-km/y	645,900	576 ped-km/y	775,656 pers-km/y
Travel Time (Total)	veh-h/y	14,258	245 ped-h/y	17,354 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	541,335 55,377 130,141 11 152 40	6,029 \$/y	547,364 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:56 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

Site: 101 [EX+BTG 2032 PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 10 years

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	East: Church St E														
5	T1	All MCs	196	0.0	196	0.0	0.369	11.7	LOS A	3.9	27.2	0.78	0.62	0.78	48.7
6	R2	All MCs	61	0.0	61	0.0	*0.369	22.8	LOS B	3.9	27.2	0.83	0.68	0.83	46.0
Appro	bach		257	0.0	257	0.0	0.369	14.3	LOS A	3.9	27.2	0.79	0.64	0.79	48.0
North	: Bach	ell Ave													
7	L2	All MCs	144	0.0	144	0.0	0.129	10.2	LOS A	1.5	10.7	0.46	0.69	0.46	49.5
9	R2	All MCs	502	0.0	502	0.0	*0.750	23.3	LOS B	12.0	84.0	0.94	0.90	1.06	42.1
Appro	bach		646	0.0	646	0.0	0.750	20.4	LOS B	12.0	84.0	0.83	0.85	0.92	43.5
West:	Chur	ch St W													
10	L2	All MCs	194	0.0	194	0.0	0.152	6.7	LOS A	0.8	5.5	0.31	0.63	0.31	52.1
11	T1	All MCs	228	0.0	228	0.0	*0.731	24.7	LOS B	6.0	41.7	1.00	0.90	1.21	42.7
Appro	bach		422	0.0	422	0.0	0.731	16.4	LOS B	6.0	41.7	0.68	0.78	0.79	46.6
All Ve	hicles		1325	0.0	1325	0.0	0.750	17.9	LOS B	12.0	84.0	0.77	0.79	0.86	45.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance													
Mov D Crossing	Input	Dem.	Aver.	Level of	Prop.	Eff.	Travel	Travel	Aver.					
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
East: Church	St E													
P2 Full	50	60	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65			
All Pedestrians	50	60	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:56 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 AM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 8:00-9:00am Site Category: (None) Give-Way (Two-Way) Design Life Analysis (Final Year): Results for 10 years

Intersection Performance - Hourly Values Performance Measure Vehicles: All MCs Persons Travel Speed (Average) 44.3 km/h km/h 44.3 Travel Distance (Total) veh-km/h 1472.8 1767.4 pers-km/h Travel Time (Total) veh-h/h 33.2 39.9 pers-h/h Desired Speed km/h 50.0 Speed Efficiency 0.89 **Travel Time Index** 8.74 **Congestion Coefficient** 1.13 Demand Flows (Total) veh/h 1454 1745 pers/h Arrival Flows (Total) veh/h 1454 Percent Heavy Vehicles (Demand) % 0.0 Percent Heavy Vehicles (Arrivals) % 0.0 Degree of Saturation 0.652 Practical Spare Capacity % 22.8 Effective Intersection Capacity veh/h 2232 Control Delay (Total) veh-h/h 2.89 3.47 pers-h/h Control Delay (Average) 7.2 7.2 sec sec Control Delay (Worst Lane by MC) sec 20.1 Control Delay (Worst Movement by MC) 20.1 sec 20.1 sec Geometric Delay (Average) sec 4.5 Stop-Line Delay (Average) 2.6 sec Idling Time (Average) 1.5 sec Intersection Level of Service (LOS) NA 95% Back of Queue - Veh (Worst Lane) veh 3.2 95% Back of Queue - Dist (Worst Lane) 22.2 m Ave. Que Storage Ratio (Worst Lane) 0.02 Effective Stops (Total) 1116 pers/h veh/h 930 Effective Stop Rate 0.64 0.64 Proportion Queued 0.14 0.14 Performance Index 38.8 38.8 Cost (Total) \$/h 1221.39 1221.39 \$/h Fuel Consumption (Total) L/h 110.7 Carbon Dioxide (Total) kg/h 260.1 Hydrocarbons (Total) kg/h 0.018 Carbon Monoxide (Total) kg/h 0.21 NOx (Total) 0.065 kg/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 80.9% 0.0% 0.0%

Intersection Performance - Annual Va	lues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	698,112	837,735 pers/y
Delay (Total)	veh-h/y	1,387	1,664 pers-h/y
Effective Stops (Total)	veh/y	446,348	535,617 pers/y
Travel Distance (Total)	veh-km/y	706,955	848,346 pers-km/y
Travel Time (Total)	veh-h/y	15,946	19,136 pers-h/y
Cost (Total)	\$/y	586,269	586,269 \$/y
Fuel Consumption (Total)	L/y	53,119	
Carbon Dioxide (Total)	kg/y	124,830	
Hydrocarbons (Total)	kg/y	9	
Carbon Monoxide (Total)	kg/y	99	
NOx (Total)	kg/y	31	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:57 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 AM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 8:00-9:00am Site Category: (None) Give-Way (Two-Way)

Design Life Analysis (Final Year): Results for 10 years

Vehio	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Railway Street Bridge														
1	L2	All MCs	248	0.0	248	0.0	0.455	4.7	LOS A	0.0	0.0	0.00	0.55	0.00	45.7
3	R2	All MCs	596	0.0	596	0.0	0.455	4.7	LOS A	0.0	0.0	0.00	0.55	0.00	45.5
Appro	bach		845	0.0	845	0.0	0.455	4.7	NA	0.0	0.0	0.00	0.55	0.00	45.6
East:	Churc	h St E													
4	L2	All MCs	378	0.0	378	0.0	0.204	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	45.9
Appro	bach		378	0.0	378	0.0	0.204	4.6	NA	0.0	0.0	0.00	0.53	0.00	45.9
West:	Churc	ch St W													
12	R2	All MCs	232	0.0	232	0.0	0.652	20.1	LOS B	3.2	22.2	0.88	1.16	1.58	38.3
Appro	bach		232	0.0	232	0.0	0.652	20.1	LOS B	3.2	22.2	0.88	1.16	1.58	38.3
All Ve	hicles		1454	0.0	1454	0.0	0.652	7.2	NA	3.2	22.2	0.14	0.64	0.25	44.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / IPC | Processed: Monday, 16 October 2023 9:36:57 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 PM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 4:45-5:45pm Site Category: (None) Give-Way (Two-Way) Design Life Analysis (Final Year): Results for 10 years

			Bereene
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	37.6	37.6 km/h
Travel Distance (Total)	veh-km/h	1815.4	2178.5 pers-km/h
Fravel Time (Total)	veh-h/h	48.3	58.0 pers-h/h
Desired Speed	km/h	50.0	
Speed Efficiency		0.75	
Travel Time Index		7.24	
Congestion Coefficient		1.33	
Demand Flows (Total)	veh/h	1790	2148 pers/h
Arrival Flows (Total)	veh/h	1790	
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		1.025	
Practical Spare Capacity	%	-22.0	
Effective Intersection Capacity	veh/h	1746	
		40.00	40.40
Control Delay (Total)	veh-h/h	10.98	13.18 pers-h/h
Control Delay (Average)	sec	22.1	22.1 sec
Control Delay (Worst Lane by MC)	Sec	127.0	407.0
Control Delay (Worst Movement by MC)	sec	127.0	127.0 sec
Geometric Delay (Average)	sec	4.5	
Stop-Line Delay (Average)	sec	17.5	
dling Time (Average)	sec	12.6	
ntersection Level of Service (LOS)		NA	
95% Back of Queue - Veh (Worst Lane)	veh	19.9	
95% Back of Queue - Dist (Worst Lane)	m	139.5	
Ave. Que Storage Ratio (Worst Lane)		0.11	
Effective Stops (Total)	veh/h	1567	1881 pers/h
Effective Stop Rate		0.88	0.88
Proportion Queued		0.14	0.14
Performance Index		64.0	64.0
Cost (Total)	\$/h	1744.14	1744.14 \$/h
Fuel Consumption (Total)	L/h	145.9	ι/++.ι+ ψ/Π
Carbon Dioxide (Total)	kg/h	342.8	
Hydrocarbons (Total)	kg/h	0.026	
Carbon Monoxide (Total)	kg/h	0.020	
NOx (Total)	kg/h	0.27	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 86.6% 0.0% 0.0%

Intersection Performance - Annual Va	lues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	859,392	1,031,271 pers/y
Delay (Total)	veh-h/y	5,273	6,327 pers-h/y
Effective Stops (Total)	veh/y	752,242	902,690 pers/y
Travel Distance (Total)	veh-km/y	871,381	1,045,657 pers-km/y
Travel Time (Total)	veh-h/y	23,201	27,841 pers-h/y
Cost (Total)	\$/y	837,185	837,185 \$/y
Fuel Consumption (Total)	L/y	70,023	
Carbon Dioxide (Total)	kg/y	164,553	
Hydrocarbons (Total)	kg/y	12	
Carbon Monoxide (Total)	kg/y	128	
NOx (Total)	kg/y	40	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:58 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

V Site: 101 [EX+BTG 2032 PM: Church St/Railway St Bridge, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 4:45-5:45pm Site Category: (None) Give-Way (Two-Way)

Design Life Analysis (Final Year): Results for 10 years

Vehio	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Railway Street Bridge														
1	L2	All MCs	421	0.0	421	0.0	0.407	4.7	LOS A	0.0	0.0	0.00	0.54	0.00	45.8
3	R2	All MCs	335	0.0	335	0.0	0.407	4.7	LOS A	0.0	0.0	0.00	0.54	0.00	45.6
Appro	bach		756	0.0	756	0.0	0.407	4.7	NA	0.0	0.0	0.00	0.54	0.00	45.7
East:	Churc	h St E													
4	L2	All MCs	780	0.0	780	0.0	0.420	4.7	LOS A	0.0	0.0	0.00	0.53	0.00	45.8
Appro	bach		780	0.0	780	0.0	0.420	4.7	NA	0.0	0.0	0.00	0.53	0.00	45.8
West:	Churc	ch St W													
12	R2	All MCs	254	0.0	254	0.0	1.025	127.0	LOS F ¹¹	19.9	139.5	1.00	2.94	7.88	18.0
Appro	bach		254	0.0	254	0.0	1.025	127.0	LOS F ¹¹	19.9	139.5	1.00	2.94	7.88	18.0
All Ve	hicles		1790	0.0	1790	0.0	1.025	22.1	NA	19.9	139.5	0.14	0.88	1.12	37.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

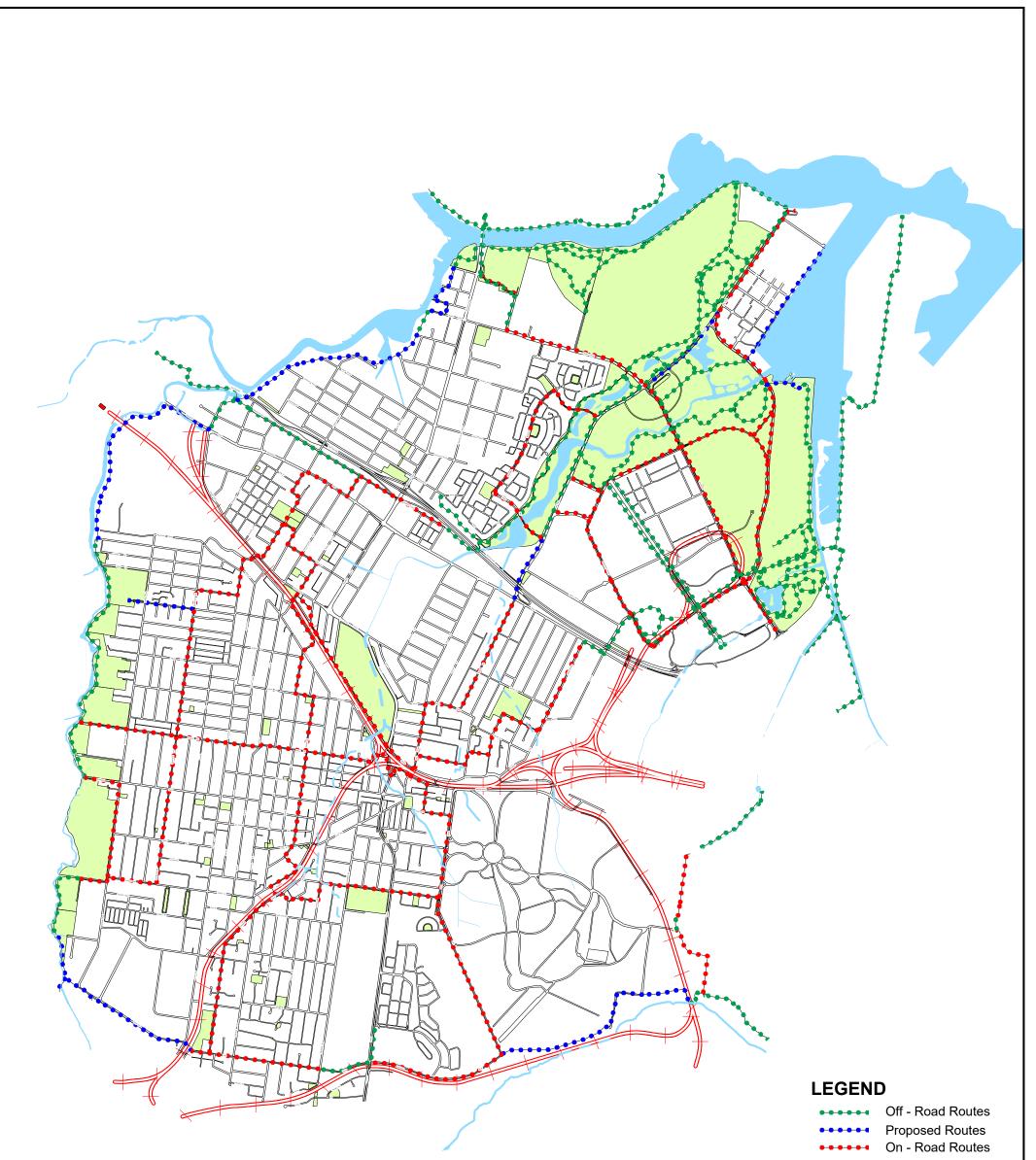
Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

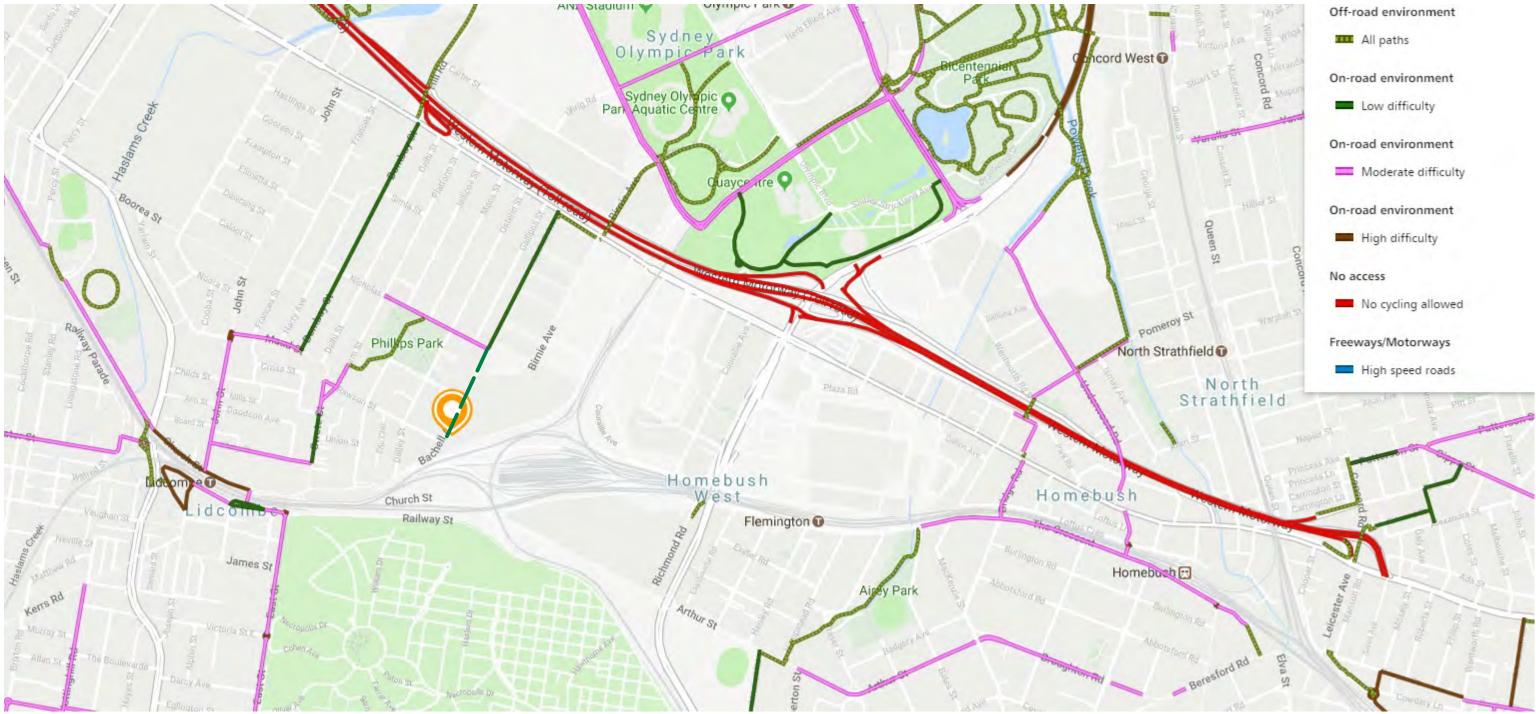
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Monday, 16 October 2023 9:36:58 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

APPENDIX D

Railway Line
Waterways
Parks


Scale 1:30000@A3

Auburn LGA Cycling Routes

N

Map projection: UTM Coordinate System: GDA/MGA 1994 Zone 56 File Name: Cycle Routes Date: 14/12/2009

EXISTING AND FUTURE BICYCLE PATHS

POSSIBLE FUTURE ON ROAD CONNECTION IN BACHELL AVENUE

SOURCE TRANSPORT FOR NSW CYCLEPATH FINDER

LEGEND Off-road

APPENDIX E

RAAD PROPERTY ACQUISITION NO 10 PTY LTD

BUSINESS DEVELOPMENT AT 2 BACHELL AVENUE LIDCOMBE SUPPLEMENTARY REPORT TECHNICAL PAPER No 2 ON HOURLY TRAFFIC GENERATION PROFILES OF ACOUSTIC ASSESSMENT

Prepared by:

Lyle Marshall & Partners Pty Ltd Consulting Engineers, Architects, Transportation and Environmental Planners

Suite 31, 401 Pacific Highway ARTARMON NSW 2064

Phone: (02) 9436-0086 Email: lyle@lylemarshall.com.au

Job No.: 1194-22 Report No.: 19/23

OCTOBER 2023

CONTENTS

1.0	INT	RODUCTION	3
	1.1 1.2	Background Scope of Report	
2.0	TR/	AFFIC GENERATION PROFILES	3
	2.1 2.2	Opening Hours for Each Facility Profile Analysis	5
	2.3	Speed Analysis	7

LIST OF FIGURES

- Figure 1a Weekday Traffic Generation Profile
- Figure 1b Weekend Traffic Generation Profile
- Figure 2 Traffic Assignment of volumes to Bachell Avenue from Development
- Figure 3 Safe Sight Distance and Speed

APPENDICES

APPENDIX A

- HOURLY PROFILE ANALYSIS
- WEEKDAY DATA
- WEEKEND DATA

APPENDIX B

MATRIX TRANSPORT AND TRAFFIC DATA-

- COMBINED 7 DAY SPEED 15 METRES NORTH OF RAWSON STREET
- COMBINED WEEKDAY SPEED 15 METRES NORTH OF RAWSON STREET

1.0 INTRODUCTION

1.1 Background

The aim of the study is to create a traffic generation profile for each use by hour for the proposed facility for the purpose of creating a profile of the total traffic generation for the purposes of acoustic modelling.

1.2 Scope of Report

Using survey data from actual count data and RMS survey data and analysis create a traffic generation profile for each use for each hour of the day during weekdays and for weekends.

Calculate average speed taken from 5 day and 7 day count data. Assign speed and distance to main development site intersection in Bachell Avenue.

2.0 TRAFFIC GENERATION PROFILES

The usage profiles are based on the results of trip generation surveys undertaken on behalf of TfNSW. The total traffic generation for each use is created based upon survey data and then an hourly profile is created in excel for each use per hour based upon the opening hours of each facility.

2.1 **Opening Hours for Each Facility**

The opening hours for each use is listed in Table 2.1 **Table 2.1a**

	Mon, Tues,	Wed, Friday	
	Hours		
Use	Employees	Opening	Employees
Specliazed Retail	8-9am	9am-7pm	7pm-8pm
Office	8-9am	9am-5pm	5pm-7pm
Restaurant	10-11am	11am-12 midnight	
Café	7-8am	9am-2pm	2pm-3pm
Food and Drinks	10am- 11am	11am-12 midnight	
Self Storage	4-5am	5am-4pm	4pm-9pm
Medical	6am-7am	7am-9pm	9pm-10pm
Gym	24hours	24hours	
childcare centre	6am-7am	7am-7pm	
Light Industry	4-5am	5am-4pm	4pm-9pm
High Technology	8-9am	9am-5pm	5pm-7pm

(2.1 Continued)

Table 2.1b

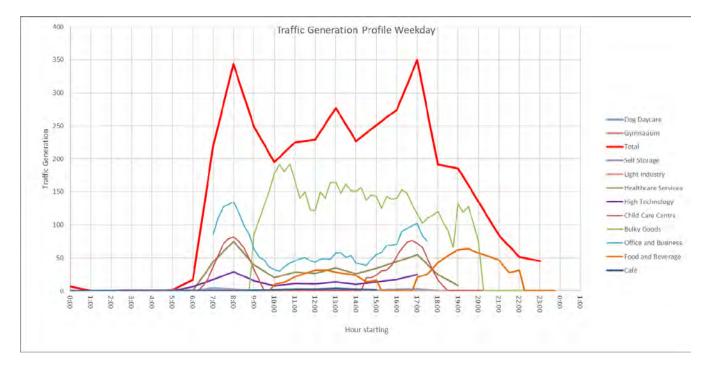
	Thursday		
Use	Employees	Opening	Employees
Specliazed Retail	8-9am	9am-7pm	7pm-8pm
Office	8-9am	9am-5pm	5pm-7pm
Restaurant	10-11am	11am-12 midnight	
Café	7-8am	9am-2pm	2pm-3pm
Food and Drinks	10am- 11am	11am-12 midnight	
Self Storage	4-5am	5am-4pm	4pm-9pm
Medical	6am-7am	7am-9pm	9pm-10pm
Gym	24hours	24hours	
childcare centre	6am-7am	7am-7pm	
Light Industry	4-5am	5am-4pm	4pm-9pm
High Technology	8-9am	9am-5pm	5pm-7pm

Table 2.1c

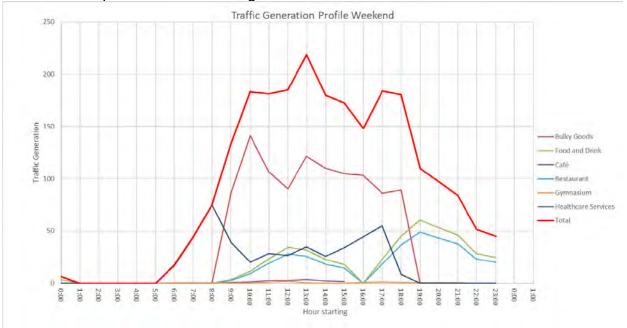
	Saturday/Su	ınday	
	Employees	Opening	Employees
Specliazed Retail	8-9am	9am-5pm	5pm-6pm
Office			
Restaurant	10-11am	11am-12 midnight	
Café	7-8am	9am-2pm	2pm-3pm
Food and Drinks Self Storage	10am- 11am	11am-12 midnight	
Medical	6am-7am	7am-4pm	4pm-5pm
Gym	24hours	24hours	
childcare centre			
Light Industry			
High Technology			

Note: Some uses are closed on weekends.

2.2 **Profile Analysis**


A traffic profile has been developed which considers the offset peak traffic generations of the differing uses of the site. The traffic generation profile for weekdays is shown in Figure 1a below with the detailed sources presented in thereafter.

The profile has been developed using the raw survey result data provided in the following documents, many of which underpin the rates of traffic generation expressed in RMS TDT 2013/04a or RTA Guide to Traffic Generating Developments 2002.


Data has been sourced from the following sources:-

- Roads and Traffic Authority Trip Generation and Parking Generation Surveys (Office Blocks) – Data Report – GTA Consultants 30/04/10.
- Traffic Authority of New South Wales Land Use Traffic Generation Data and Analysis 15 – Restaurants – Travers Morgan Pty. Ltd. August 1981
- Traffic Authority of New South Wales Land Use Traffic Generation Data and Analysis 24– Gymnasiums
- Traffic Surveys carried out by Carcount for Lyle Marshall & Partners of the Lounge Hound Dog Daycare centre at Annandale in 2023.

Roads and Maritime Services Trip Generation Surveys – Child Care Centres – Data Report – TEF Consulting August 2015.

Figure 1a Weekday Traffic Generation Profile

The weekend profile is shown in Figure 1b

Figure 1a Weekend Traffic Generation Profile

Volumes have been assigned from the development to Bachell Avenue and these are shown in **Figure 2**.

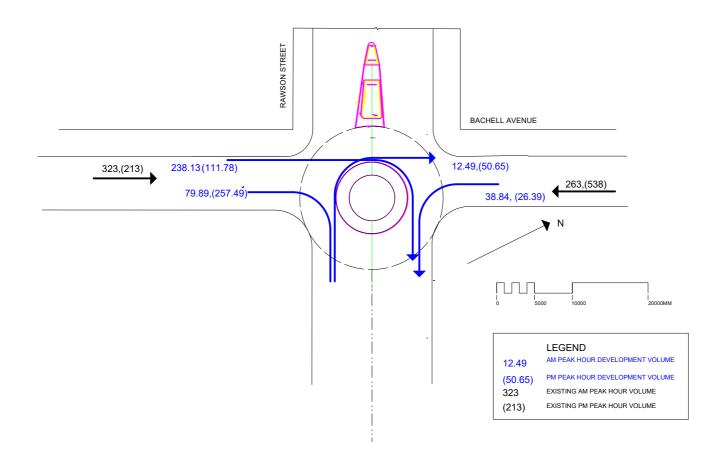


Figure 2 FUTURE DEVELOPMENT PEAK HOUR VOLUMES AT SITE DRIVEWAY AND BACHELL AVENUE/RAWSON STREET INTERSECTION

2.3 Speed Analysis

The equation for the calculation of speed from AUSTROADS Road Design Guide Part 4a.

 $T_{254}(F_{1}+0.016)$ $F_{1} = 0.52 \text{ Can}$ = 0.29 Funchs $R_{T} = 2 \text{ Sees}$ + 47.64 = 78.2 m

This calculation determines the safe stopping distance from the roundabout intersection point. From this point we can determine the average speed between this point and the intersection in both directions. The downhill grade is south of the intersection point. The uphill grade is north of the intersection point. The grades are taken from the survey data.

Please refer to the attached **Figure 3** for the location of SSD in each direction.

In summary for position of 70.3 metres north of the intersection the average speed taken from combined 7 day average is 25.55 Km/hr. At 78.2 metres south of the intersection the average speed is also 25.55Km/hour. South of this it is taken as 51.1Km./hour.

Speed is taken from the Matrix Classification speed surveys dated 24/6/2023. The Summary Data is included in Appendix B of this report.

Northbound

Weekday Average speed direction combined = 50.8Km/hour Northbound

7 Day average combined = 51.5km/hour Northbound

Southbound

Weekday Average speed direction combined = 48.8Km/hour Northbound

7 Day average combined = 49.9Km/hour Northbound

Combined

Weekday Average speed direction combined = 50.2Km/hour Northbound

7 Day average combined = 51.1km/hour Northbound

The highest 85% percentile speed recorded was 55Km/hour. Signposted speed is 60Km/hour

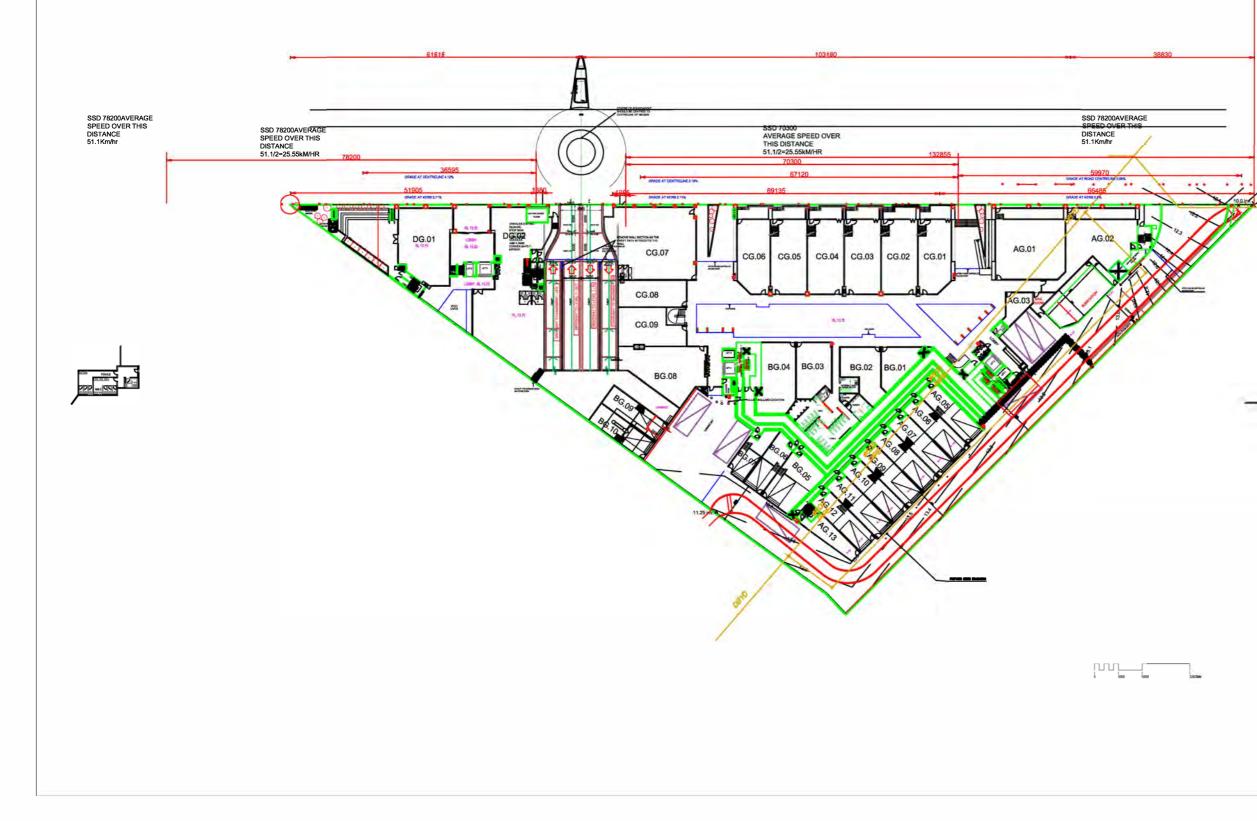
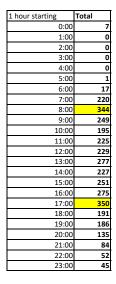
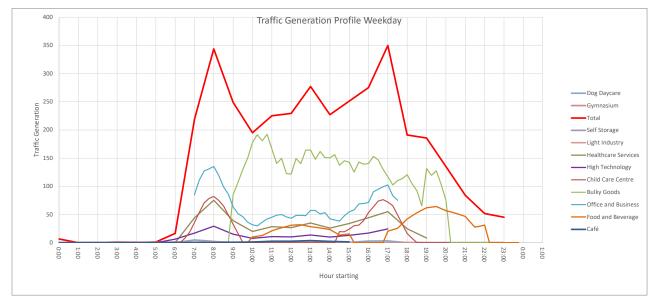


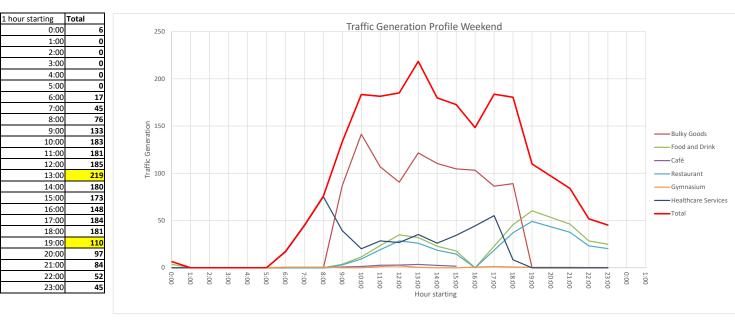
FIGURE 3


GROUND LEVEL SSD SPEED SCALE 1:800 (A3) DATE:12.10.2023 APPENDICES


APPENDIX A

				<u> </u>	[ffice and						
		Numbe			lumber		Number			Number				usiness						og
w	eekday Profile				of Trips	97.9	of Trips	70.9		of Trips	8	1	tr	ips	191.7	Resta	urant	57.7	U	aycare
		hild care o			ky Goods		Food and D			Café	C 1			C 1			-			C 1
TL	our starting	Profile		1 hour startir P	rone	Fraffic gen	1 hour staP		Traffic gen	1 hour sta Pr	one	Traffic gen	1 hour start Pr	onie	Traffic Gen	1 hour star Profil		Fraffic Gen	1 hour star P	rofile
	0:0		0	0:00		0	0:00	5%	4	0:00		0	0:00		0	0:00 1:00	5%	2.885 0	0:00	
	1:0 2:0		0	1:00 2:00		0	1:00 2:00		0	1:00 2:00		0	1:00 2:00		0	2:00		0	1:00 2:00	
	3:0		0	3:00		0	3:00		0	3:00		0	3:00		0	3:00		0	3:00	
	4:0		0	4:00		0	4:00		0	4:00		0	4:00		0	4:00		0	4:00	
	4.0		0	5:00		0	5:00		0	4.00 5:00	5%		5:00		0	5:00		0	5:00	
	6:0		-	6:00		0	6:00		0	6:00	5%		6:00		0	6:00		0	6:00	
	7:0			7:00		0	7:00		0	7:00	5%		7:00	63%	120.77	7:00		0	7:00	33.3%
	8:0			8:00		0	8:00		0	8:00	6%		8:00	100%	191.70	8:00		0	8:00	18.0%
	9:0			9:00	62%	60	9:00	5%	4	9:00	10%		9:00	47%	90.10	9:00	5%	2.885	9:00	0.0%
	10:0		0	10:00	100%	98	10:00	16%	11	10:00	16%		10:00	24%	46.01	10:00	16%	9.232	10:00	0.070
	11:0		0	11:00	76%	74	11:00	33%	23	11:00	33%		11:00	34%	65.18	11:00	33%	19.041	11:00	
	12:0		0	12:00	64%	63	12:00	49%	35	12:00	35%		12:00	32%	61.34	12:00	49%	28.273	12:00	
	13:0	o	0	13:00	86%	84	13:00	45%	32	13:00	45%	4	13:00	42%	80.51	13:00	45%	25.965	13:00	
	14:0	0 24	% 10.176	14:00	78%	76	14:00	32%	23	14:00	30%	2	14:00	31%	59.43	14:00	32%	18.464	14:00	
	15:0	<mark>0</mark> 38	16.112	15:00	74%	72	15:00	25%	18	15:00	20%	2	15:00	41%	78.60	15:00	25%	14.425	15:00	5.1%
	16:0	<mark>0</mark> 82	34.556	16:00	73%	71	16:00		0	16:00			16:00	53%	101.60	16:00		0	16:00	20.5%
	17:0	<mark>0</mark> 67	28.408	17:00	61%	60	17:00	32%	23	17:00			17:00	70%	134.19	17:00	32%	18.464	17:00	23.1%
	18:0	<mark>0</mark> 20	8.48	18:00	63%	62	18:00	64%	45	18:00			18:00	6%	11.50	18:00	64%	36.928	18:00	
	19:0	<mark>0</mark>	0	19:00	68%	67	19:00	85%	60	19:00			19:00			19:00	85%	49.045	19:00	
	20:0	<mark>0</mark>	0	20:00	39%	38	20:00	75%	53	20:00			20:00			20:00	75%	43.275	20:00	
	21:0	0	0	21:00		0	21:00	65%	46	21:00			21:00			21:00	65%	37.505	21:00	
	22:0	0	0	22:00		0	22:00	40%	28	22:00			22:00			22:00	40%	23.08	22:00	
	23:0	0	0	23:00		0	23:00	35%	25	23:00			23:00			23:00	35%	20.195	23:00	

14	Gymnasi	um	7.9	s	elf Storag	e 4.8	Ligh Indu	it ustry	17		lthcare vices	83.55	High Tech	nology	32.4
Traffic Gen	1 hour star Profile		Traffic Gen	1 hour start P	rofile	Traffic Gen	1 hour starting		Traffic Gen	1 hour st; Pro	file	Traffic Gen	1 hour st Profi	ie	Traffic Gen
0	0:00	1%	0.09	0:00		0	0:00		0	0:00		0	0:00		0
0	1:00			1:00		0	1:00		0	1:00		0	1:00		0
0	2:00			2:00		0	2:00		0	2:00		0	2:00		0
0	3:00			3:00		0	3:00		0	3:00		0	3:00		0
0	4:00			4:00	1.2%	0.059	4:00	1.0%	0.2	4:00		0	4:00		0
0	5:00	4%	0.32	5:00	3.0%	0.146	5:00	2.9%	0.5	5:00		0	5:00		0
0	6:00	6%	0.51	6:00	5.9%	0.282	6:00	2.9%	0.5	6:00	20%	0	6:00	20%	6
4.67	7:00	6%	0.51	7:00	6.5%	0.313	7:00	10.1%		7:00	53%	44.28	7:00	53%	17
2.51	8:00	6%	0.51	8:00	6.2%	0.299	8:00	7.7%	1.3	8:00	90%	75.20	8:00	90%	29
0.00	9:00		0	9:00	7.2%	0.345	9:00	7.3%	1.2	9:00	47%	39.27	9:00	47%	
0.00	10:00		0	10:00	6.0%	0.288	10:00	7.7%	1.3	10:00	24%	20.05	10:00	24%	8
0.00	11:00	1%	0.09	11:00	7.3%	0.350	11:00	7.5%	1.3	11:00	34%	28.41	11:00	34%	11
0.00	12:00	5%	0.38	12:00	8.7%	0.417	12:00	9.9%	1.7	12:00	32%	26.74	12:00	32%	10
0.00	13:00	5%	0.38	13:00	6.2%	0.297	13:00	7.9%	1.3	13:00	42%	35.09	13:00	42%	14
0.00	14:00		0	14:00	7.1%	0.339	14:00	8.1%	1.4	14:00	31%	25.90	14:00	31%	10
0.72	15:00		0	15:00	9.0%	0.430	15:00	8.7%	1.5	15:00	41%	34.26	15:00	41%	13
2.87	16:00	15%	1	16:00	7.4%	0.355	16:00	7.5%	1.3	16:00	53%	44.28	16:00	53%	17
3.23	17:00	15%	1.19	17:00	6.8%	0.326	17:00	9.0%	1.5	17:00	66%	55.14	17:00	76%	25
0.00	18:00	25%	1.98	18:00	3.8%	0.182	18:00	1.2%	0.2	18:00	30%	24.94	18:00		
0	19:00	20%	1.58	19:00	1.3%	0.060	19:00	0.0%	0	19:00	10%	8.36	19:00		
0	20:00	6%	0.47	20:00	0.8%	0.040	20:00	0.0%	0	20:00	10%		20:00		
0	21:00	5%	0.40	21:00	2.3%	0.108	21:00	0.0%	0	21:00			21:00		
0	22:00	3%	0.24	22:00			22:00			22:00			22:00		
0	23:00	2%	0.16	23:00			23:00			23:00			23:00		

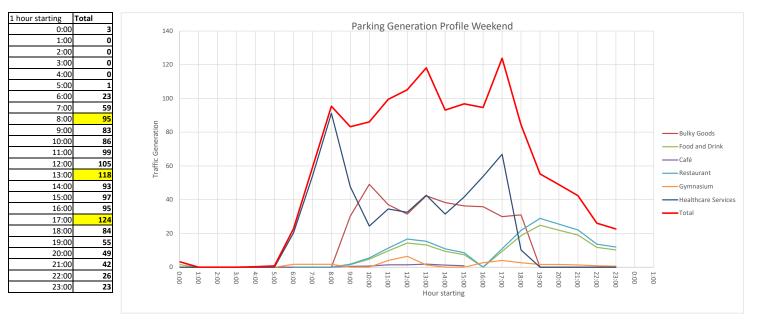


Weekend Profile o	Number of Trips care centi	0	Trip	mber of os Bulky Good	141.375	Number of Trips Food and Drir	70.9		Number of Trips Café	8			fice and isiness	0	Restaur	ant 57.7	Do Da	og aycare	0	Gym	nnasium
1 hour starting P		Traffic Gen	1 hour Pro	,	raffic gen	1 hour star Pr		raffic gen	1 hour star Pro	nfile .	Traffic gen	1 hour staPro	ofile	Traffic gen	1 hour st Profile	Traffic Gen	1 hour st; Pr	ofile 1	raffic Gen	1 hour s Prof	file
0:00	Tome	0	0:00		0	0:00	5%	4	0:00	Sinc	0	0:00		0	0:00	5% 2.885	0:00	0	0	0:00	1%
1:00		0	1:00		0	1:00	570	0	1:00		0	1:00		0	1:00	2.000	1:00		0	1:00	1/0
2:00		0	2:00		0	2:00		0	2:00		0	2:00		0	2:00		2:00		0	2:00	
3:00		0	3:00		0	3:00		0	3:00		0	3:00		0	3:00		3:00		0	3:00	
4:00		0	4:00		0	4:00		0	4:00		0	4:00		0	4:00		4:00		0	4:00	
5:00		0	5:00		0	5:00		0	5:00	5%	0.0	5:00		0	5:00		5:00		0	5:00	4%
6:00	17%	0	6:00		0	6:00		0	6:00	5%	0.0	6:00		0	6:00	0	6:00		0	6:00	6%
7:00	74%	0	7:00		0	7:00		0	7:00	5%	0.0	7:00	63%	0.0	7:00	0	7:00	33.3%	0.00	7:00	6%
8:00	100%	0	8:00		0	8:00		0	8:00	6%	0.0	8:00	100%	0.0	8:00	0	8:00	18.0%	0.00	8:00	6%
9:00	83%	0	9:00	62%	87	9:00	5%	4	9:00	10%	0.8	9:00	47%	0.0	9:00	5% 2.885	9:00	0.0%	0.00	9:00	
10:00		0	10:00	100%	141	10:00	16%	11	10:00	16%	1.3	10:00	24%	0.0	10:00	16% 9.232	10:00		0.00	10:00	
11:00		0	11:00	76%	107	11:00	33%	23	11:00	33%	2.6	11:00	34%	0.0	11:00	33% 19.041	11:00		0.00	11:00	15%
12:00		0	12:00	64%	90	12:00	49%	35	12:00	35%	2.8	12:00	32%	0.0	12:00	49% 28.273	12:00		0.00	12:00	25%
13:00		0	13:00	86%	122	13:00	45%	32	13:00	45%	3.6	13:00	42%	0.0	13:00	45% 25.965	13:00		0.00	13:00	5%
14:00	24%	0	14:00	78%	110	14:00	32%	23	14:00	30%	2.4	14:00	31%	0.0	14:00	32% 18.464	14:00		0.00	14:00	
15:00	38%	0	15:00	74%	105	15:00	25%	18	15:00	20%	1.6	15:00	41%	0.0	15:00	25% 14.425	15:00	5.1%	0.00	15:00	
16:00	82%	0	16:00	73%	103	16:00		0	16:00			16:00	53%	0.0	16:00	0	16:00	20.5%	0.00	16:00	10%
17:00	67%	0	17:00	61%	86	17:00	32%	23	17:00			17:00	76%	0.0	17:00	32% 18.464	17:00	23.1%	0.00	17:00	15%
18:00	20%	0	18:00	63%	89	18:00	64%	45	18:00			18:00			18:00	64% 36.928	18:00		0.00	18:00	10%
19:00		0	19:00		0	19:00	85%	60	19:00			19:00			19:00	85% 49.045	19:00		0	19:00	6%
20:00		0	20:00		0	20:00	75%	53	20:00			20:00			20:00	75% 43.275	20:00		0	20:00	6%
21:00		0	21:00		0	21:00	65%	46	21:00			21:00			21:00	65% 37.505	21:00		0	21:00	5%
22:00		0	22:00		0	22:00	40%	28	22:00			22:00			22:00	40% 23.08	22:00		0	22:00	3%
23:00		0	23:00		0	23:00	35%	25	23:00			23:00			23:00	35% 20.195	23:00		0	23:00	2%

Note Weekend trip rate is higher at 3.9/100m2 GFA

7.9	Se	elf Storage	0		ght Idustry	0	Health Service		83.55	Hig Tec	h :hnology	0
Traffic Gen	1 hour stai Pr	rofile	Traffic Gen	1 hour starti	ng	Traffic Gen	1 hour s Profile	-	Traffic Gen	1 hour § Pro	file	Traffic G
0	0:00		0	0:00		0	0:00		0	0:00		0
0	1:00		0	1:00		0	1:00		0	1:00		0
0	2:00		0	2:00		0	2:00		0	2:00		0
0	3:00		0	3:00		0	3:00		0	3:00		0
0	4:00	1.2%	0.00	4:00	1.0%	0.0	4:00		0	4:00		0
0	5:00	3.0%	0.00	5:00	2.9%	0.0	5:00		0	5:00		0
0.51	6:00	5.9%	0.00	6:00	2.9%	0.0	6:00	20%	16.71	6:00		0
0.51	7:00	6.5%	0.00	7:00	10.1%	0.0	7:00	53%	44.28	7:00	20%	0
0.51	8:00	6.2%	0.00	8:00	7.7%	0.0	8:00	90%	75.20	8:00	53%	0
0	9:00	7.2%	0.00	9:00	7.3%	0.0	9:00	47%	39.27	9:00	90%	0
0	10:00	6.0%	0.00	10:00	7.7%	0.0	10:00	24%	20.05	10:00	47%	0
1.19	11:00	7.3%	0.00	11:00	7.5%	0.0	11:00	34%	28.41	11:00	24%	0
1.98	12:00	8.7%	0.00	12:00	9.9%	0.0	12:00	32%	26.74	12:00	34%	0
0.38	13:00	6.2%	0.00	13:00	7.9%	0.0	13:00	42%	35.09	13:00	32%	0
0	14:00	7.1%	0.00	14:00	8.1%	0.0	14:00	31%	25.90	14:00	42%	0
0	15:00	9.0%	0.00	15:00	8.7%	0.0	15:00	41%	34.26	15:00	31%	0
1	16:00	7.4%	0.00	16:00	7.5%	0.0	16:00	53%	44.28	16:00	41%	0
1.19	17:00	6.8%	0.00	17:00	9.0%	0.0	17:00	66%	55.14	17:00	53%	0
0.79	18:00	3.8%	0.00	18:00	1.2%	0.0	18:00	10%	8.36	18:00	76%	
0.47	19:00	1.3%	0.00	19:00	0.0%	0	19:00		0	19:00		
0.47	20:00	0.8%	0.00	20:00	0.0%	0	20:00		0	20:00		
0.40	21:00	2.3%	0.00	21:00	0.0%	0	21:00		0	21:00		
0	22:00			22:00			22:00		0	22:00		
0	23:00			23:00			23:00		0	23:00		

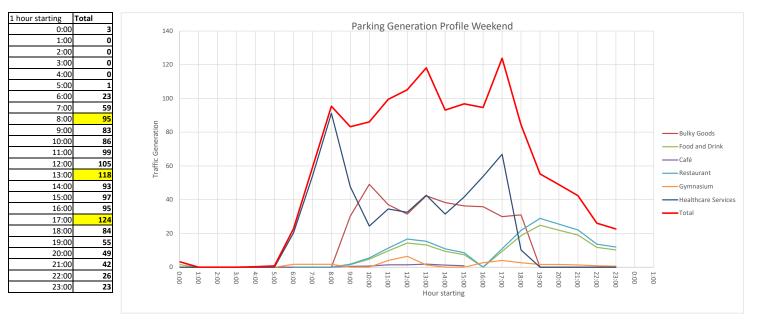
Weekend Profile



APPENDIX B

Job No		AUNSW7	198										Bin Su	mmary
Client		LYLE MA	RSHALL &	PARTNE	RS PTY LTI	b							10-20	1.8%
Site		Bachell A	Ave				1944	E K					20-30	16.8%
Location		15 mete	rs north c	of Rawson	St		900 -						30-40	26.7%
Site No		ATC 1					800 -		810				40-50	34.8%
Start Date	2	24-Jun-2	3				700 - 2 000 -	623					50-60	17.3%
Day		7 Day Av					Vehicles 000 - 000 -						60-70	2.3%
Direction	,	Combin					\$ 400 -	391	402			_	70-80	0.2%
Descripti		Speed Su					300 -	- 64					80-90	0.2%
		Speed Su	inninary				200 - 100 - 4	3	53					
Select Sit							0			5 1	1 0 0	0	90-100	0.0%
ATC 1 - Bac	tel Ae(15	meters nort	h of Rawson	(21)	Ŀ		.; ;	`* *` i		نې ^{تې} نه ^{تې} م	3 3 5 4 5	9 ⁷	100-110	0.0%
				г						Bins (Kph)	* *		110-120	0.0%
Select Da	ay 7 DayA	• •	Select D	rection	ambined •	<u> </u>			speed	oins (Kpn)			120+	0.0%
													40.9	51.1
Hour		1	1		Veł	nicle Spe	ed Bins (kph)					Spe	ed
Starting	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120+	Ave	85%ile
0:00	0	2	4	9	6	2	0	0	0	0	0	0	45.9	55.9
1:00	1	2	3	12	8	1	0	0	0	0	0	0	46.6	55.2
2:00	0	2	3	10	10	5	0	0	0	0	0	0	49.2	59.5
3:00	0	2	3	7	6	3	0	0	0	0	0	0	47.5	57.1
4:00	2	4	7	14	10	2	1	0	0	0	0	0	44.2	55.1
5:00	2	7	16	28	16	3	0	0	0	0	0	0	43.4	54.2
6:00	3	23	38	69	31	4	0	0	0	0	0	0	42.3	52.1
7:00	2	24	31	48	24	1	0	0	0	0	0	0	41.0	51.4
8:00	4	32	48	66	31	3	0	0	0	0	0	0	41.0	51.5
9:00	5	25	43	47	20	3	0	0	0	0	0	0	39.5	49.3
10:00	4 3	29	37 34	36 34	14 17	2 3	0	0 0	0 0	0 0	0 0	0	38.6	47.8
11:00 12:00	3	31 35	54 44	54 46	22	3 2	0 0	0	0	0	0	0 0	38.1 38.8	48.3 48.6
12:00	2	28	44 50	40	27	2 3	0	0	0	0	0	0	40.0	50.6
14:00	<u>^</u> 3	20	48		27	3	0	0	0	0	0	0	39.7	50.0
15:00		33	59	58	23	3	0	0	0	0	0	0	39.2	50.0
16:00	2	25	47	58	28	2	0	0	0	0	0	0	41.0	51.3
17:00	1	17	48	58	21	3	0	0	0	0	0	0	41.2	50.8
18:00	1	14	23	36	16	2	0	0	0	0	0	0	41.8	51.7
19:00	0	9	12	18	10	1	0	0	0	0	0	0	41.1	51.3
20:00	0	5	9	17	11	1	0	0	0	0	0	0	43.8	53.5
21:00	1	6	7	16	9	0	0	0	0	0	0	0	42.7	52.8
22:00	0	3	6	12	8	1	0	0	0	0	0	0	44.9	54.8
23:00	0	4	5	12	7	1	0	0	0	0	0	0	44.5	53.4
Total	43	391	623	810	402	53	5	1	1	0	0	0	40.9	51.1

Job No		AUNSW7	198										Bin Su	mmary
Client		LYLE MA	RSHALL &	PARTNE	RS PTY LT	b	Mar.						10-20	2.0%
Site		Bachell A	Ave				144	K K					20-30	17.0%
Location		15 mete	rs north c	of Rawson	St		10 00 -		935				30-40	27.0%
Site No		ATC 1					900 -						40-50	35.8%
Start Date	2	24-Jun-2	:3				800 - s 700 -	707					50-60	15.9%
Day		Weekday	Ave				Vehicles - 000 - 0	_					60-70	2.0%
Direction	,	Combin					> 500 - 400 -	445	416				70-80	0.2%
Descripti		Speed Su					300 -						80-90	0.2%
		Speca Sa	inninary				200 _	2	53	-				
Select Si						_	100 - 5				0 0 0	0	90-100	0.0%
ATC 1 - Bac	hel Ae(15	metersnort	h of Rawson	(St)	Ŀ	-	\$	\$ • • •		م مراقع شور م	\$ \$ \$ \$ \$	ġ.	100-110	0.0%
											3 ∛		110-120	0.0%
Select Da	ay Weekd	ay Au 🛨	Select D	rection	onbined -	┙			Speed	Bins (Kph)			120+	0.0%
													40.3	50.2
Hour					Veł	nicle Spe	ed Bins (kph)					Spe	ed
Starting	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120+	Ave	85%ile
0:00	0	2	3	8	6	2	0	0	0	0	0	0	46.2	56.6
1:00	1	2	3	11	8	2	0	0	0	0	0	0	46.3	55.2
2:00	1	2	3	10	12	6	0	0	0	0	0	0	49.5	60.5
3:00	0	2	3	9	7	3	0	0	0	0	0	0	48.5	57.5
4:00	2	5	8	16	11	2	0	0	0	0	0	0	43.5	54.7
5:00	3	8	20	36	18	4	0	0	0	0	0	0	43.0	53.2
6:00	5	30	49	89	37	4	0	0	0	0	0	0	41.1	51.1
7:00	2	32	39	61	28	1	0	0	0	0	0	0	40.3	50.6
8:00	5	40	63	85	37	3	0	0	0	0	0	0	40.1	50.4
9:00	7	31	53	57	22	2	0	0	0	0	0	0	38.3	47.4
10:00	5	36	44	41	11	1	0	0	0	0	0	0	36.8	45.6
11:00	4	34	32	36	12	2	0	0	0	0	0	0	36.8	46.5
12:00	3	40	51	46	19	2	0	0	0	0	0	0	37.5	47.0
13:00	2	29	51	52	21	1	0	0	0	0	0	0	39.2	49.1
14:00	3	25	41	53	26	3	0	0	0	0	0	0	40.3	50.9
15:00	3	34	64	68	23	2	0	0	0	0	0	0	39.3	49.1
16:00	3	28	58	69	32	2	0	0	0	0	0	0	40.7	50.7
17:00	1	21	59	72	23	4	0	0	0	0	0	0	41.0	50.0
18:00	1	13	25	39	15	2	0	0	0	0	0	0	41.5	51.3
19:00	0	10	11	18	11	1	0	0	0	0	0	0	41.3	51.3
20:00	0	6	10	17	10	1	0	0	0	0	0	0	43.2	53.2
21:00	1	6	7	16	9	1	0	0	0	0	0	0	42.8	53.2
22:00	0	3	6	13	9	1	0	0	0	0	0	0	45.4	54.6
23:00	0	4	3	13	7	1	0	0	0	0	0	0	45.0	54.3
Total	52	445	707	935	416	53	5	1	0	0	0	0	40.3	50.



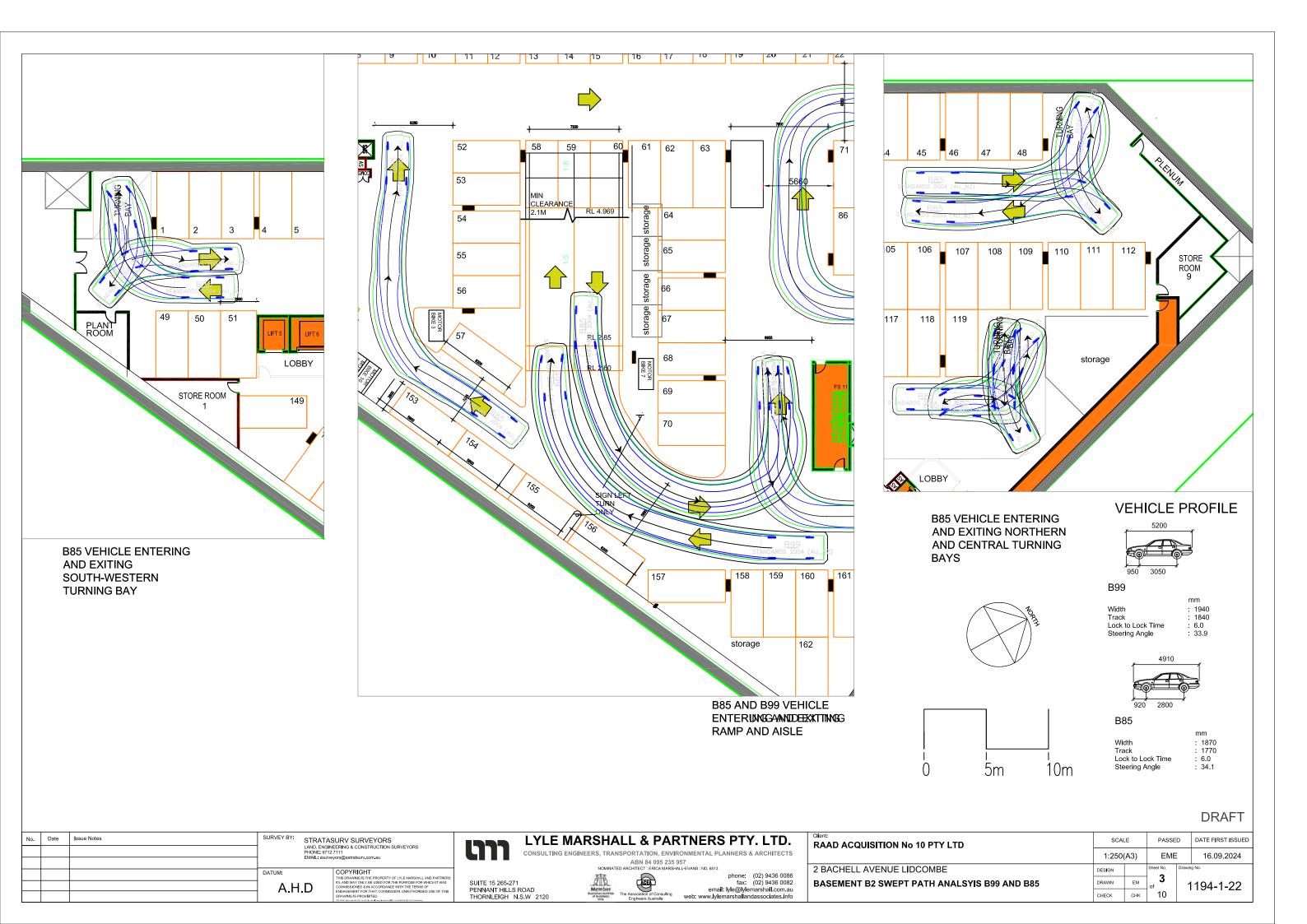
GFA/UNIT		106			3432		1167			159				6041			1359
Parking Rate		0.25			0.0143		0.025			0.025				0.025			0.025
Parking No		27			49		29			4.0				151.025			33.975
-	Number		N	umber of 🛛		Number			Number			Offic	ce and				
Weekend Profile	of Trips	0	Tr	ips	49	of Trips	29		of Trips	4.0		Busi	ness	0	Restaur	ant	34.0
Child	care centr	re		Bulky Goods		Food and Dri	۱k		Café							-	
1 hour starting	Profile	Parking	1 hour Pr	ofile Pa	arking	1 hour star Pr	ofile P	arking	1 hour star F	Profile	Parking	1 hour st: Prof	ile Pa	arking	1 hour st Profile	ŗ	Parking
0:00		0	0:00		0	0:00	5%	1	0:00		0	0:00		0	0:00	5%	1.6988
1:00		0	1:00		0	1:00		0	1:00		0	1:00		0	1:00		
2:00		0	2:00		0	2:00		0	2:00		0	2:00		0	2:00		
3:00		0	3:00		0	3:00		0	3:00		0	3:00		0	3:00		
4:00		0	4:00		0	4:00		0	4:00		0	4:00		0	4:00		
5:00		0	5:00		0	5:00		0	5:00	5%	0.0	5:00		0	5:00		
6:00	17%	0	6:00		0	6:00		0	6:00	5%	0.0	6:00		0	6:00		0
7:00	74%	0	7:00		0	7:00		0	7:00	5%	0.0	7:00	63%	0.0	7:00		0
8:00	100%	0	8:00		0	8:00		0	8:00	6%	0.0	8:00	100%	0.0	8:00		0
9:00	83%	0	9:00	62%	30	9:00	5%	1	9:00	10%	0.4	9:00	47%	0.0	9:00	5%	1.6988
10:00		0	10:00	100%	49	10:00	16%	5	10:00	16%	0.6	10:00	24%	0.0	10:00	16%	5.436
11:00		0	11:00	76%	37	11:00	33%	10	11:00	33%	1.3	11:00	34%	0.0	11:00	33%	11.212
12:00		0	12:00	64%	31	12:00	49%	14	12:00	35%	1.4	12:00	32%	0.0	12:00	49%	16.648
13:00		0	13:00	86%	42	13:00	45%	13	13:00	45%	1.8	13:00	42%	0.0	13:00	45%	15.289
14:00	24%	0	14:00	78%	38	14:00	32%	9	14:00	30%	1.2	14:00	31%	0.0	14:00	32%	10.872
15:00	38%	0	15:00	74%	36	15:00	25%	7	15:00	20%	0.8	15:00	41%	0.0	15:00	25%	8.4938
16:00	82%	0	16:00	73%	36	16:00		0	16:00			16:00	53%	0.0	16:00		0
17:00	67%	0	17:00	61%	30	17:00	32%	9	17:00			17:00	76%	0.0	17:00	32%	10.872
18:00	20%	0	18:00	63%	31	18:00	64%	19	18:00			18:00			18:00	64%	21.744
19:00		0	19:00		0	19:00	85%	25	19:00			19:00			19:00	85%	28.879
20:00		0	20:00		0	20:00	75%	22	20:00			20:00			20:00	75%	25.481
21:00		0	21:00		0	21:00	65%	19	21:00			21:00			21:00	65%	22.084
22:00		0	22:00		0	22:00	40%	12	22:00			22:00			22:00	40%	13.59
23:00		0	23:00		0	23:00	35%	10	23:00			23:00			23:00	35%	11.891

Note Weekend trip rate is higher at 3.9/100m2 GFA Refer to TDT2013/04a

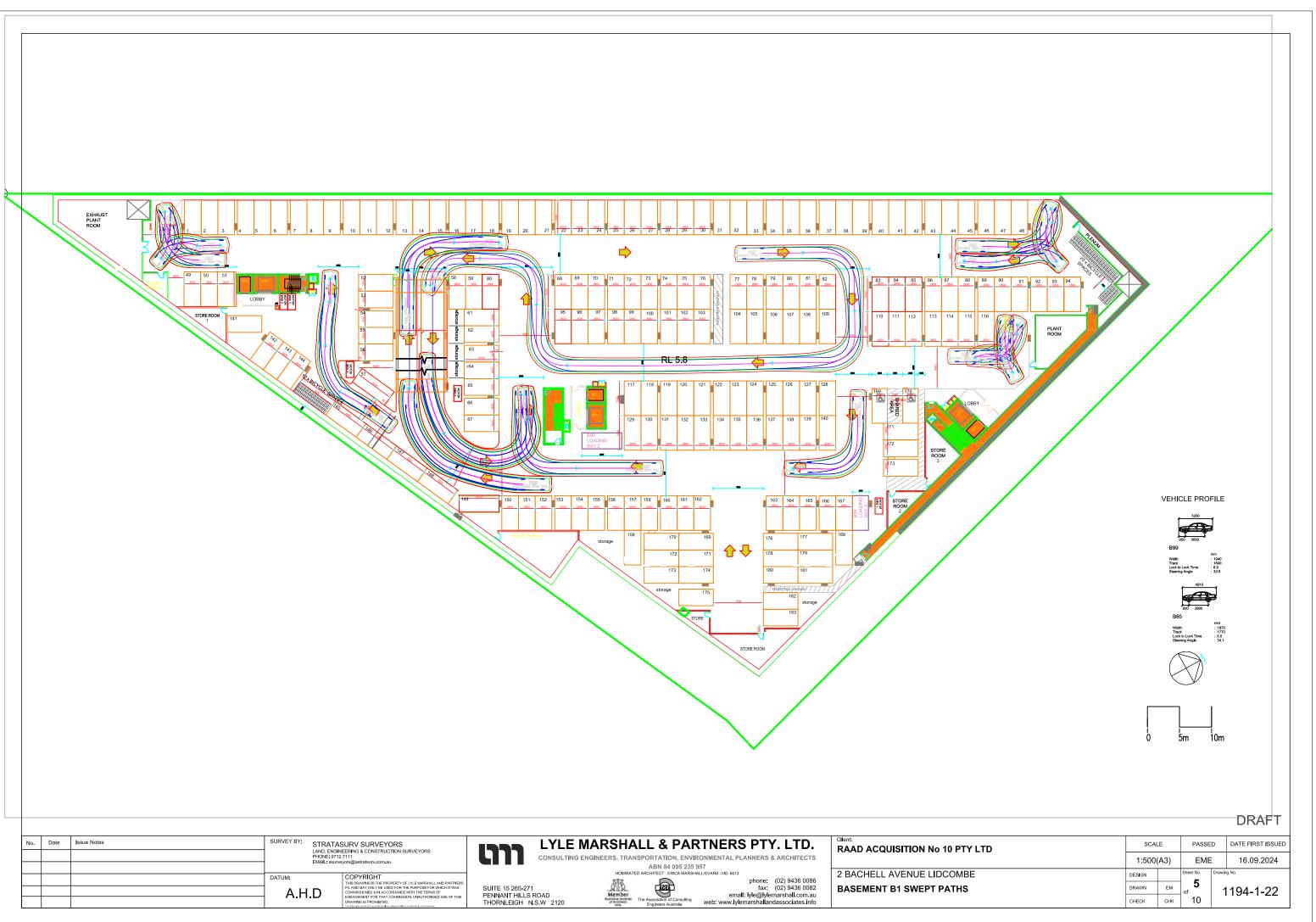
		303			863			392			1813			2535			7112
		0.01			0.03			0.003			0.013			0.04			0.013
_		3.03			25.89			1.18	_		23.569			101.4	_		92.456
	og									ght			althcare		High		
D	aycare	3	<mark>Gymna:</mark>	sium 🛛	26	Se	elf Storage	<mark>e 1</mark>	In	dustry	24	Ser	vices	101	Tech	nnology	0
1 hour staPi	file	Parking	1 hour s Profile		arking	1 hour stai Pi	file	Parking	1 hour startin		Parking	1 hour s Pro	£1.	Parking	1 hour §Prof		Parking
0:00	one	О	0:00	1%		0:00	ome	Parking 0	0:00	ig r	o ar king	0:00	me	П	0:00	ne	Parking 0
1:00		0	1:00	170	-	1:00		0	1:00		-			0			
		•			0			-			0	1:00		0	1:00		0
2:00		0	2:00		0	2:00		0	2:00		0	2:00		0	2:00		0
3:00		0	3:00		0	3:00		0	3:00		0	3:00		0	3:00		0
4:00		0	4:00		0	4:00	1.2%	0.01	4:00	1.0%	0.2	4:00		0	4:00		0
5:00		0	5:00	4%	0	5:00	3.0%	0.04	5:00	2.9%	0.7	5:00		0	5:00		0
6:00		0	6:00	6%	1.66	6:00	5.9%	0.07	6:00	2.9%	0.7	6:00	20%	20.28	6:00		0
7:00	33.3%	1.01	7:00	6%	1.66	7:00	6.5%	0.08	7:00	10.1%	2.4	7:00	53%	53.74	7:00	20%	
8:00	18.0%	0.54	8:00	6%	1.66	8:00	6.2%	0.07	8:00	7.7%	1.8	8:00	90%	91.26	8:00	53%	0
9:00	0.0%	0.00	9:00		0	9:00	7.2%	0.08	9:00	7.3%	1.7	9:00	47%	47.66	9:00	90%	0
10:00		0.00	10:00		0	10:00	6.0%	0.07	10:00	7.7%	1.8	10:00	24%	24.34	10:00	47%	0
11:00		0.00	11:00	15%	3.88	11:00	7.3%	0.09	11:00	7.5%	1.8	11:00	34%	34.48	11:00	24%	0
12:00		0.00	12:00	25%	6.47	12:00	8.7%	0.10	12:00	9.9%	2.3	12:00	32%	32.45	12:00	34%	0
13:00		0.00	13:00	5%	1.24	13:00	6.2%	0.07	13:00	7.9%	1.9	13:00	42%	42.59	13:00	32%	0
14:00		0.00	14:00		0	14:00	7.1%	0.08	14:00	8.1%	1.9	14:00	31%	31.43	14:00	42%	0
15:00	5.1%	0.16	15:00		0	15:00	9.0%	0.11	15:00	8.7%	2.1	15:00	41%	41.57	15:00	31%	0
16:00	20.5%	0.62	16:00	10%	3	16:00	7.4%	0.09	16:00	7.5%	1.8	16:00	53%	53.74	16:00	41%	0
17:00	23.1%	0.70	17:00	15%	3.88	17:00	6.8%	0.08	17:00	9.0%	2.1	17:00	66%	66.92	17:00	53%	
18:00		0.00	18:00	10%	2.59	18:00	3.8%	0.04	18:00	1.2%	0.3	18:00	10%	10.14	18:00	76%	
19:00		0.00	19:00	6%	1.55	19:00	1.3%	0.01	19:00	0.0%	0	19:00	_3/0	0	19:00	. 270	
20:00		0	20:00	6%	1.55	20:00	0.8%	0.01	20:00	0.0%	0	20:00		0	20:00		
20:00		0	21:00	5%	1.29	20:00	2.3%	0.01	20:00	0.0%	0	20:00		0	20:00		
21:00		0	22:00	3%	1.29	22:00	2.370	0.03	21:00	0.070	5	22:00		0	22:00		
22:00		0	22:00	3% 2%		22:00			22:00			22:00		0	22:00		
23:00		0	23:00	۷%	1	23:00			23:00			23:00		0	23:00		

GFA/UNIT		106			3432		1167			159				6041			1359
Parking Rate		0.25			0.0143		0.025			0.025				0.025			0.025
Parking No		27			49		29			4.0				151.025			33.975
-	Number		N	umber of 🛛		Number			Number			Offic	ce and				
Weekend Profile	of Trips	0	Tr	ips	49	of Trips	29		of Trips	4.0		Busi	ness	0	Restaur	ant	34.0
Child	care centr	re		Bulky Goods		Food and Dri	۱k		Café							-	
1 hour starting	Profile	Parking	1 hour Pr	ofile Pa	arking	1 hour star Pr	ofile P	arking	1 hour star F	Profile	Parking	1 hour st: Prof	ile Pa	arking	1 hour st Profile	ŗ	Parking
0:00		0	0:00		0	0:00	5%	1	0:00		0	0:00		0	0:00	5%	1.6988
1:00		0	1:00		0	1:00		0	1:00		0	1:00		0	1:00		
2:00		0	2:00		0	2:00		0	2:00		0	2:00		0	2:00		
3:00		0	3:00		0	3:00		0	3:00		0	3:00		0	3:00		
4:00		0	4:00		0	4:00		0	4:00		0	4:00		0	4:00		
5:00		0	5:00		0	5:00		0	5:00	5%	0.0	5:00		0	5:00		
6:00	17%	0	6:00		0	6:00		0	6:00	5%	0.0	6:00		0	6:00		0
7:00	74%	0	7:00		0	7:00		0	7:00	5%	0.0	7:00	63%	0.0	7:00		0
8:00	100%	0	8:00		0	8:00		0	8:00	6%	0.0	8:00	100%	0.0	8:00		0
9:00	83%	0	9:00	62%	30	9:00	5%	1	9:00	10%	0.4	9:00	47%	0.0	9:00	5%	1.6988
10:00		0	10:00	100%	49	10:00	16%	5	10:00	16%	0.6	10:00	24%	0.0	10:00	16%	5.436
11:00		0	11:00	76%	37	11:00	33%	10	11:00	33%	1.3	11:00	34%	0.0	11:00	33%	11.212
12:00		0	12:00	64%	31	12:00	49%	14	12:00	35%	1.4	12:00	32%	0.0	12:00	49%	16.648
13:00		0	13:00	86%	42	13:00	45%	13	13:00	45%	1.8	13:00	42%	0.0	13:00	45%	15.289
14:00	24%	0	14:00	78%	38	14:00	32%	9	14:00	30%	1.2	14:00	31%	0.0	14:00	32%	10.872
15:00	38%	0	15:00	74%	36	15:00	25%	7	15:00	20%	0.8	15:00	41%	0.0	15:00	25%	8.4938
16:00	82%	0	16:00	73%	36	16:00		0	16:00			16:00	53%	0.0	16:00		0
17:00	67%	0	17:00	61%	30	17:00	32%	9	17:00			17:00	76%	0.0	17:00	32%	10.872
18:00	20%	0	18:00	63%	31	18:00	64%	19	18:00			18:00			18:00	64%	21.744
19:00		0	19:00		0	19:00	85%	25	19:00			19:00			19:00	85%	28.879
20:00		0	20:00		0	20:00	75%	22	20:00			20:00			20:00	75%	25.481
21:00		0	21:00		0	21:00	65%	19	21:00			21:00			21:00	65%	22.084
22:00		0	22:00		0	22:00	40%	12	22:00			22:00			22:00	40%	13.59
23:00		0	23:00		0	23:00	35%	10	23:00			23:00			23:00	35%	11.891

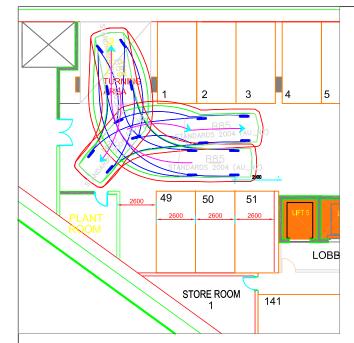

Note Weekend trip rate is higher at 3.9/100m2 GFA Refer to TDT2013/04a

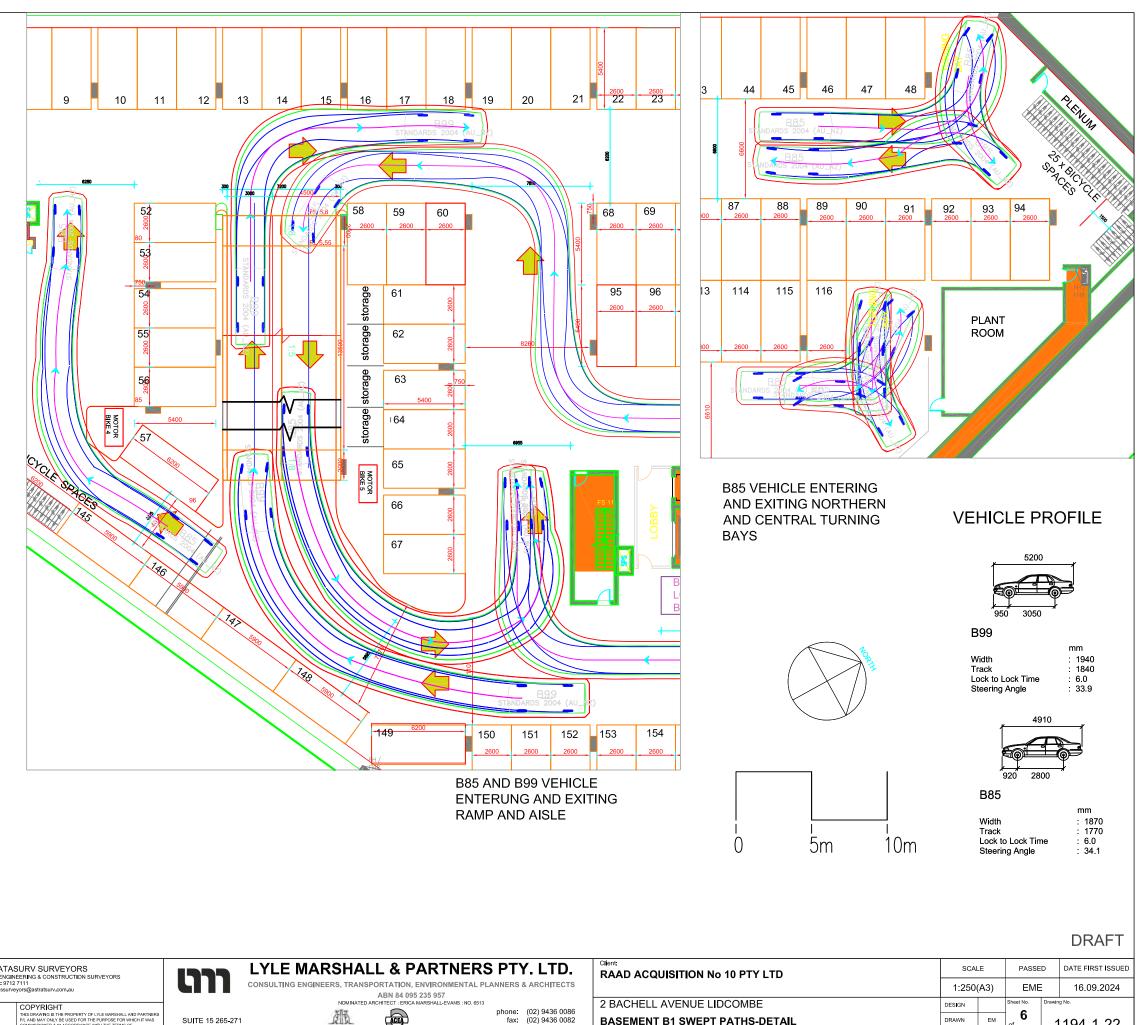

$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																		7112
Dog Daycare J Gymnasium Zei Self Storage J Light Industry Zai Healthcare Services High Technolog 1 hour str Profile Parking 1 hour s Profile Parking 1 hour strain Parking 1 hour s Profile																		0.013
DayCare 3 Cymnasium 26 Self Storage 1 Industry 24 Services 101 Technolog 1 hour st Profile Parking 1 hour s Profile Parking 1 hour st Profile Parking 1 hour s Profile <	_		3.03			25.89			1.18	_		23.569			101.4	_		92.456
1 hour st.Profile Parking 1 hour statProfile Parking 1 hour statProfile Parking 1 hour string Parking											• I					-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	Daycare	3	<mark>Gymna</mark>	sium 🛛	26	S	elf Storag	<mark>e 1</mark>	<mark>.</mark> In	dustry	24	Ser	vices	101	Tech	nnology	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 hour st: P	Profile	Parking	1 hour s Profile		Parking	1 hour starP	rofile	Parking	1 hour startir	ο σ [Parking	1 hours Pro	filo	Parking	1 hour (Prof	مان	Parking
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Tome	0			0		rome	0		15 1	0		inc	-		lic	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Ũ		1/0	-			-			-			v			0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			°,						-						0			0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-												0			0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ũ			-		1 20/	-		1.00/				-			
6:00 0 6:00 6:00 5.9% 0.07 6:00 2.9% 0.7 6:00 20% 20.28 6:00 7:00 33.3% 1.01 7:00 6% 1.66 7:00 6.5% 0.08 7:00 10.1% 2.4 7:00 53% 53.74 7:00 20 8:00 18.0% 0.54 8:00 6% 1.66 8:00 6.2% 0.07 8:00 7.7% 1.8 8:00 90% 91.26 8:00 90 90 90 7.3% 1.7 9:00 47% 47.66 9:00 90 90 90 10:00 7.7% 1.8 10:00 24% 24.34 10:00 47 11:00 15% 3:88 11:00 7.3% 0.09 11:00 7.5% 1.8 11:00 34% 84.48 11:00 24 24.04 12:00 34 14:00 44 12:00 34 14:00 44 12:00 34 14:00 44 12:00 34 14:00 34 14:00 34 14:00 34 <td></td> <td></td> <td>°,</td> <td></td> <td>40/</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0</td>			°,		40/	-									-			0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-											2004	-			0
8:00 18.0% 0.54 8:00 6% 1.66 8:00 6.2% 0.07 8:00 7.7% 1.8 8:00 90% 91.26 8:00 930 9:00 0.0% 0.00 9:00 0 9:00 7.2% 0.08 9:00 7.3% 1.7 9:00 47% 47.66 9:00 90 10:00 0.00 10:00 0 0 10:00 6.0% 0.07 10:00 7.7% 1.8 10:00 24% 24.34 10:00 47 11:00 0.00 11:00 15% 3.88 11:00 7.3% 0.09 11:00 7.5% 1.8 10:00 24% 24.34 10:00 24 12:00 0.00 11:00 15% 3.88 11:00 7.3% 0.09 12:00 9.9% 2.3 12:00 34% 34.48 11:00 24 12:00 0.00 14:00 5% 1.41 13:00 6.2% 0.07 13:00 7.9% 1.9 13:00 32.45 12:00 32.45 12:			-															0
9:00 0.0% 0.00 9:00 7.2% 0.08 9:00 7.3% 1.7 9:00 47% 47.66 9:00 47 10:00 0.00 10:00 0 10:00 6.0% 0.07 10:00 7.7% 1.8 10:00 24% 24.34 10:00 47 11:00 0.00 11:00 15% 3.88 11:00 7.3% 0.09 11:00 7.5% 1.8 11:00 34% 34.48 11:00 24 12:00 0.00 12:00 25% 6.47 12:00 8.7% 0.10 12:00 9.9% 2.3 12:00 32% 32.45 12:00 34 13:00 0.00 14:00 5% 1.24 13:00 6.2% 0.07 13:00 7.9% 1.9 14:00 32% 32.45 12:00 32 14:00 0.00 14:00 7.1% 0.08 14:00 8.1% 1.9 14:00 31:4 14:00 41:57 15:00 31 15:00 5.1% 0.62 16:00																	20%	0
10:00 0.00 10:00 0 10:00 6.0% 0.07 10:00 7.7% 1.8 10:00 24% 24.34 10:00 47 11:00 0.00 11:00 15% 3.88 11:00 7.3% 0.09 11:00 7.5% 1.8 11:00 34% 34.48 11:00 24 12:00 0.00 12:00 25% 6.47 12:00 8.7% 0.10 12:00 9.9% 2.3 12:00 32% 32.45 12:00 34 13:00 0.00 14:00 5% 1.24 13:00 6.2% 0.07 13:00 7.9% 1.9 13:00 42% 42.59 13:00 32 14:00 0.00 14:00 0 14:00 7.1% 0.08 14:00 8.1% 1.9 14:00 31% 31.43 14:00 42 15:00 5.1% 0.16 15:00 0 0 15:00 9.0% 0.11 15:00 8.7% 2.1 15:00 41% 41.57 15:00 31 <td< td=""><td></td><td></td><td></td><td></td><td>6%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53%</td><td></td></td<>					6%												53%	
11:00 0.00 11:00 15% 3.88 11:00 7.3% 0.09 11:00 7.5% 1.8 11:00 34% 34.48 11:00 24 12:00 0.00 12:00 25% 6.47 12:00 8.7% 0.10 12:00 9.9% 2.3 12:00 32% 32.45 12:00 34 13:00 0.00 13:00 5% 1.24 13:00 6.2% 0.07 13:00 7.9% 1.9 13:00 42% 42.59 13:00 32 14:00 0.00 14:00 0 14:00 7.1% 0.08 14:00 8.1% 1.9 14:00 31% 31.43 14:00 42 15:00 5.1% 0.16 15:00 0 15:00 9.0% 0.11 15:00 8.7% 2.1 15:00 41% 41.57 15:00 31 16:00 20.5% 0.62 16:00 10% 3 16:00 7.5% 1.8 16:00 53% 53.74 16:00 41 17:00 23.1%		0.0%															90%	0
12:00 0.00 12:00 25% 6.47 12:00 8.7% 0.10 12:00 9.9% 2.3 12:00 32% 32.45 12:00 34 13:00 0.00 13:00 5% 1.24 13:00 6.2% 0.07 13:00 7.9% 1.9 13:00 42% 42.59 13:00 32 14:00 0.00 14:00 0 14:00 7.1% 0.08 14:00 8.1% 1.9 14:00 31% 31.43 14:00 42 15:00 5.1% 0.16 15:00 0 15:00 9.0% 0.11 15:00 8.7% 2.1 15:00 41% 41.57 15:00 31 16:00 20.5% 0.62 16:00 10% 3 16:00 7.4% 0.09 16:00 7.5% 1.8 16:00 53% 53.74 16:00 41 17:00 23.1% 0.70 15% 3.88 17:00 6.8% 0.04 18:00 1.2% 1.8 10:04 18:00 10% 10% 10.4								6.0%				1.8			24.34	10:00	47%	
13:00 0.00 13:00 5% 1.24 13:00 6.2% 0.07 13:00 7.9% 1.9 13:00 42% 42.59 13:00 32 14:00 0.00 14:00 0 14:00 7.1% 0.08 14:00 8.1% 1.9 14:00 31% 31.43 14:00 42 15:00 5.1% 0.16 15:00 0 15:00 9.0% 0.11 15:00 8.7% 2.1 15:00 41% 41.57 15:00 31 16:00 20.5% 0.62 16:00 10% 3 16:00 7.4% 0.09 16:00 7.5% 1.8 16:00 53% 53.74 16:00 41 17:00 23.1% 0.70 17:00 15% 3.88 17:00 6.8% 0.04 18:00 1.2% 0.3 18:00 1.04 18:00 76 18:00 0.00 18:00 1.0% 2.59 18:00 3.8% 0.04 18:00 1.2% 1.3 10.0 1.4 18:00 76	11:00		0.00	11:00	15%	3.88	11:00	7.3%	0.09	11:00	7.5%	1.8	11:00	34%	34.48	11:00	24%	0
14:00 0.00 14:00 0 14:00 7.1% 0.08 14:00 8.1% 1.9 14:00 31% 31.43 14:00 42 15:00 5.1% 0.16 15:00 0 15:00 9.0% 0.11 15:00 8.7% 2.1 15:00 41% 41.57 15:00 31 16:00 20.5% 0.62 16:00 10% 3 16:00 7.4% 0.09 16:00 7.5% 1.8 16:00 53% 53.74 16:00 41 17:00 23.1% 0.70 17:00 15% 3.88 17:00 6.8% 0.08 17:00 9.0% 2.1 17:00 66% 66.92 17:00 53 18:00 0.00 18:00 1.0% 2.59 18:00 3.8% 0.04 18:00 1.2% 0.3 18:00 10.4 18:00 76 19:00 0 19:00 1.55 19:00 1.3% 0.01 19:00 0.0% 0 19:00 10.4 18:00 10.9 10.4 19:00	12:00		0.00	12:00	25%	6.47	12:00	8.7%	0.10	12:00	9.9%	2.3	12:00	32%	32.45	12:00	34%	0
15:00 5.1% 0.16 15:00 0 15:00 9.0% 0.11 15:00 8.7% 2.1 15:00 41% 41.57 15:00 31 16:00 20.5% 0.62 16:00 10% 3 16:00 7.4% 0.09 16:00 7.5% 1.8 16:00 53% 53.74 16:00 41 17:00 23.1% 0.70 17:00 15% 3.88 17:00 6.8% 0.08 17:00 9.0% 2.1 17:00 66% 66.92 17:00 53 18:00 0.00 18:00 10% 2.59 18:00 3.8% 0.04 18:00 1.2% 0.3 18:00 10.4 18:00 76 19:00 0 19:00 6% 1.55 19:00 1.3% 0.01 19:00 0.0% 0 19:00 0 19:00 0 19:00 0 19:00 0.0% 0 19:00 0 19:00 10 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0	13:00		0.00	13:00	5%	1.24	13:00	6.2%	0.07	13:00	7.9%	1.9	13:00	42%	42.59	13:00	32%	C
16:00 20.5% 0.62 16:00 10% 3 16:00 7.4% 0.09 16:00 7.5% 1.8 16:00 53% 53.74 16:00 41 17:00 23.1% 0.70 17:00 15% 3.88 17:00 6.8% 0.08 17:00 9.0% 2.1 17:00 66% 66.92 17:00 53 18:00 0.00 18:00 10% 2.59 18:00 3.8% 0.04 18:00 1.2% 0.3 18:00 10.4 18:00 76 19:00 0 19:00 1.55 19:00 1.3% 0.01 19:00 0.0% 0 19:00 0 19:00 10.4 18:00 10.4 19:00 10 10:0 </td <td>14:00</td> <td></td> <td>0.00</td> <td>14:00</td> <td></td> <td>0</td> <td>14:00</td> <td>7.1%</td> <td>0.08</td> <td>14:00</td> <td>8.1%</td> <td>1.9</td> <td>14:00</td> <td>31%</td> <td>31.43</td> <td>14:00</td> <td>42%</td> <td>0</td>	14:00		0.00	14:00		0	14:00	7.1%	0.08	14:00	8.1%	1.9	14:00	31%	31.43	14:00	42%	0
17:00 23.1% 0.70 17:00 15% 3.88 17:00 6.8% 0.08 17:00 9.0% 2.1 17:00 66% 66.92 17:00 53 18:00 0.00 18:00 10% 2.59 18:00 3.8% 0.04 18:00 1.2% 0.3 18:00 10% 10.14 18:00 76 19:00 0 19:00 6% 1.55 19:00 1.3% 0.01 19:00 0.0% 0 19:00 0 19:00 19:00 19:00 10.0% 19:00 10% 20:00 10% 0.01 20:00 0.0% 0 20:00 0 20:00 10% 0.01 20:00 0.0% 0 20:00 0 20:00 10% 20:00 0.0% 0 20:00 0 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00 10% 20:00<	15:00	5.1%	0.16	15:00		0	15:00	9.0%	0.11	15:00	8.7%	2.1	15:00	41%	41.57	15:00	31%	0
18:00 0.00 18:00 1.0% 2.59 18:00 3.8% 0.04 18:00 1.2% 0.3 18:00 10% 10.14 18:00 76 19:00 0 19:00 6% 1.55 19:00 1.3% 0.01 19:00 0.0% 0 19:00 0 19:00 19:00 19:00 10.0% 19:00 0 19:00 19:00 10.0% 10 19:00 10 19:00 10 19:00 10 19:00 10 19:00 10 19:00 10	16:00	20.5%	0.62	16:00	10%	3	16:00	7.4%	0.09	16:00	7.5%	1.8	16:00	53%	53.74	16:00	41%	0
19:00 0 19:00 6% 1.55 19:00 1.3% 0.01 19:00 0.0% 0 19:00 0 19:00 20:00 0 20:00 6% 1.55 20:00 0.8% 0.01 20:00 0.0% 0 20:00 0 20:00	17:00	23.1%	0.70	17:00	15%	3.88	17:00	6.8%	0.08	17:00	9.0%	2.1	17:00	66%	66.92	17:00	53%	0
20:00 0 20:00 6% 1.55 20:00 0.8% 0.01 20:00 0.0% 0 20:00 0 20:00	18:00		0.00	18:00	10%	2.59	18:00	3.8%	0.04	18:00	1.2%	0.3	18:00	10%	10.14	18:00	76%	
	19:00		0	19:00	6%	1.55	19:00	1.3%	0.01	19:00	0.0%	0	19:00		0	19:00		
	20:00		0	20:00	6%	1.55	20:00	0.8%	0.01	20:00	0.0%	0	20:00		0	20:00		
21:00 0 21:00 5% 1.29 21:00 2.3% 0.03 21:00 0.0% 0 21:00 0 21:00 0 21:00			0															
22:00 0 22:00 3% 1 22:00 22:00 22:00 0 22:00			0															
23:00 0 23:00 2% 1 23:00 23:00 23:00 0 23:00 0 23:00			Ũ												-			

APPENDIX F



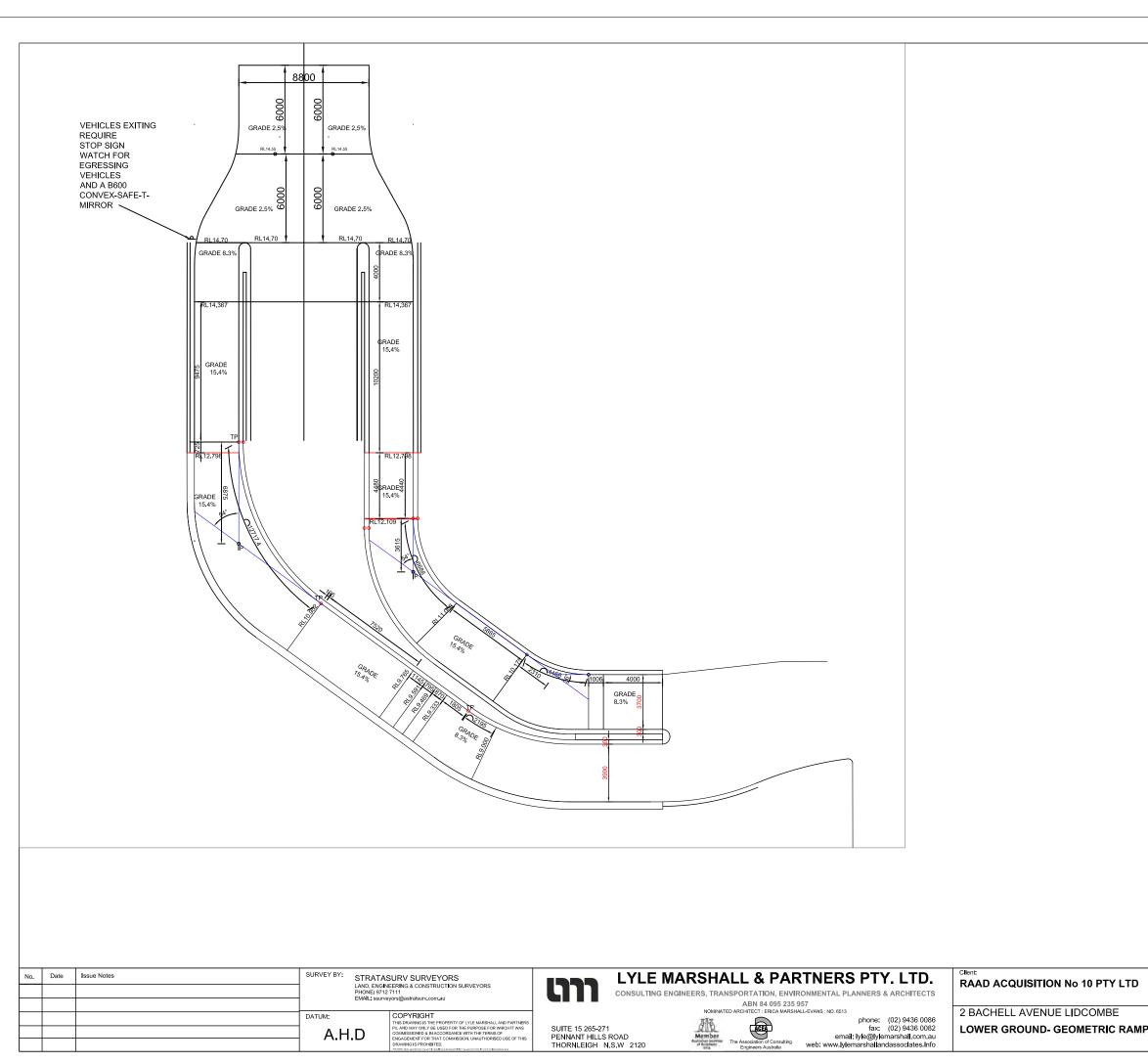
	No. Date	Issue Notes		TRATASURV SURVEYORS		LYLE MA	RSHALL & PAF	RTNERS PTY. LTD.	Client: RAAD ACQUISITION No 10 PTY LTD	
			PHO	ND, ENGINEERING & CONSTRUCTION SURVEYORS IONE: 9712 7111 ANL: ssurveyors@astratsurv.com.au		CONSULTING ENGIN	VEERS, TRANSPORTATION, ENVI			
			2.00	and sources of a contract of the contract			ABN 84 095 235	957		
							NOMINATED ARCHITECT : ERICA MARSH	ALL-EVANS : NO. 6513	2 BACHELL AVENUE LIDCOMBE	
			DATUM:	COPYRIGHT			सहाय	phone: (02) 9436 0086		
_				THIS DRAWING IS THE PROPERTY OF LYLE MARSHALL AND PARTNERS P/L AND MAY ONLY BE USED FOR THE PURPOSE FOR WHICH IT WAS	SUITE 15 265-2	71	ACEA	fax: (02) 9436 0082	BASEMENT B2 GENERAL LAYOUT	
			A.H.D	COMMISSIONED & IN ACCORDANCE WITH THE TERMS OF	PENNANT HILL		Member ACEA	email: lyle@lylemarshall.com.au	DASEMENT DZ GENERAL LATOUT	
				ENGAGEMENT FOR THAT COMMISSION UNAUTHORISED USE OF THIS DRAWING IS PROHIBITED.	THORNLEIGH		The Association of Consulting Engineers Australia	web: www.lylemarshallandassociates.info		

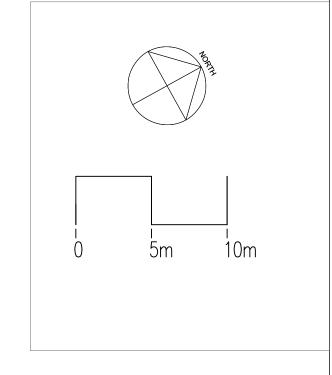




No.	Date	Issue Notes	LAND, E	TASURV SURVEYORS	ГГГІ	LYLE MARSH	Client: RAAD ACQUISITION No 10 PTY LTD		
				ssurveyors@astratsurv.com.au		CONSULTING ENGINEERS, TR	ANSPORTATION, ENVI ABN 84 095 235 JATED ARCHITECT : ERICA MARSH	2 BACHELL AVENUE LIDCOMBE	
				COPYRIGHT THIS DRAWING IS THE PROPERTY OF LYLE MARSHALL AND PARTNERS P/L AND MAY ONLY BE USED FOR THE PURPOSE FOR WHICH IT WAS	SUITE 15 265-27	开而来		phone: (02) 9436 0086 fax: (02) 9436 0082	BASEMENT B1 SWEPT PATHS
			A.H.D	COMMISSIONED & IN ACCORDANCE WITH THE TERMS OF ENGAGEMENT FOR THAT COMMISSION, UNAUTHORISED USE OF THIS DRAWING IS PROHBITED. FROM TRANSFORMED TO THE INFORMATION TO PROMOTE THE TRANSFORMED			The Association of Consulting Engineers Australia	email: lyle@lylemarshall.com.au web: www.lylemarshallandassociates.info	

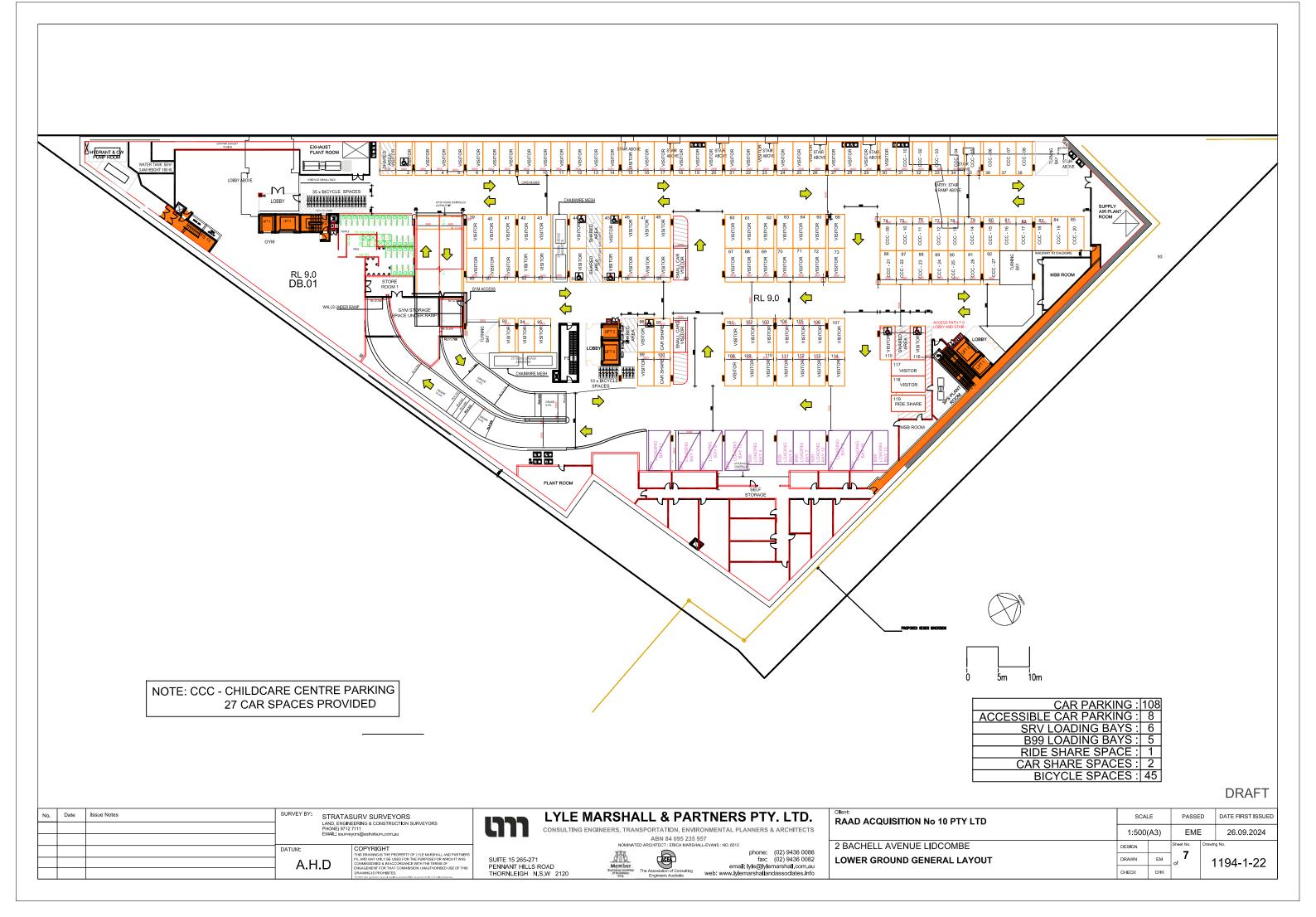
B85 VEHICLE ENTERING AND EXITING SOUTH-WESTERN TURNING BAY

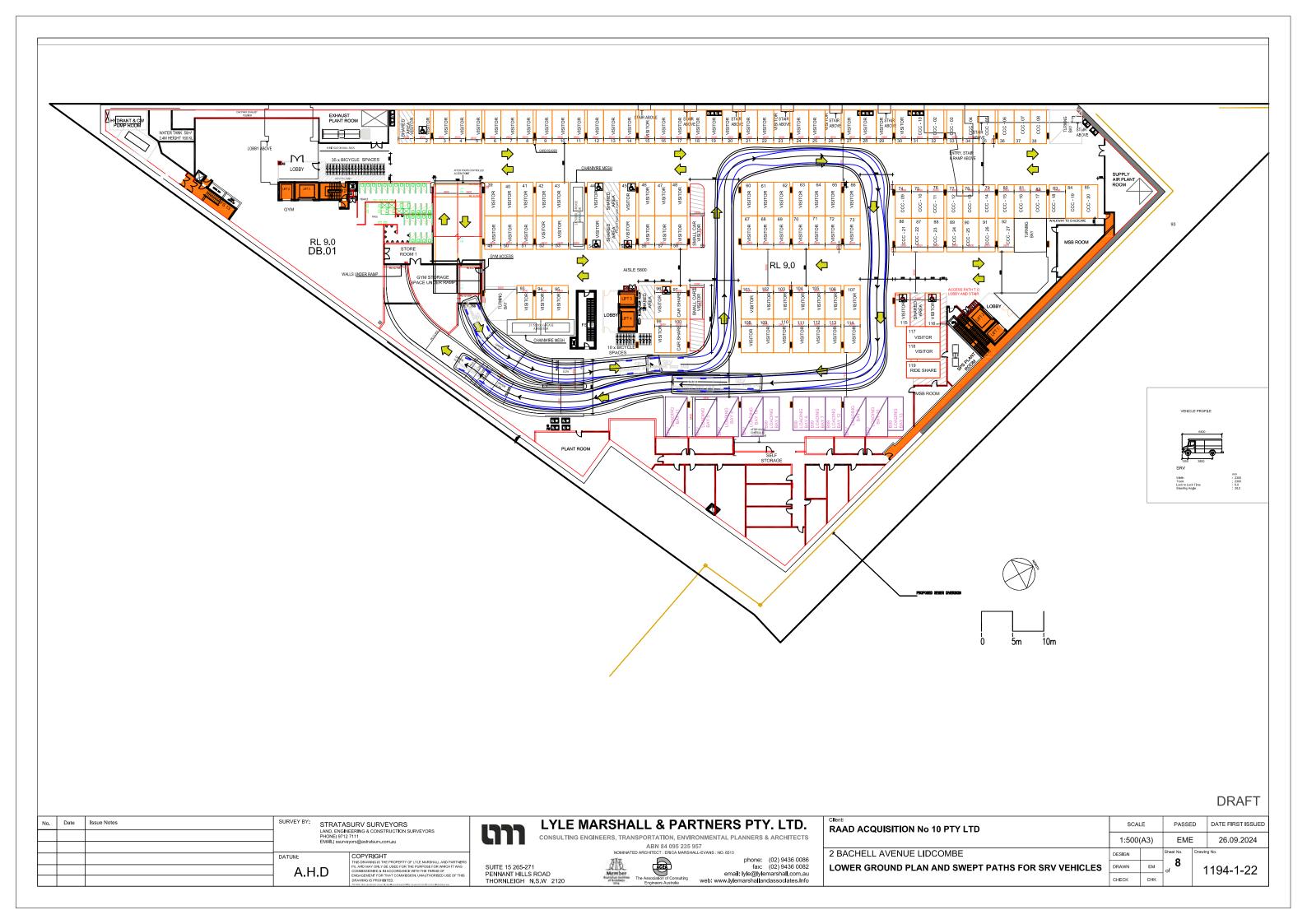

1194-1-22

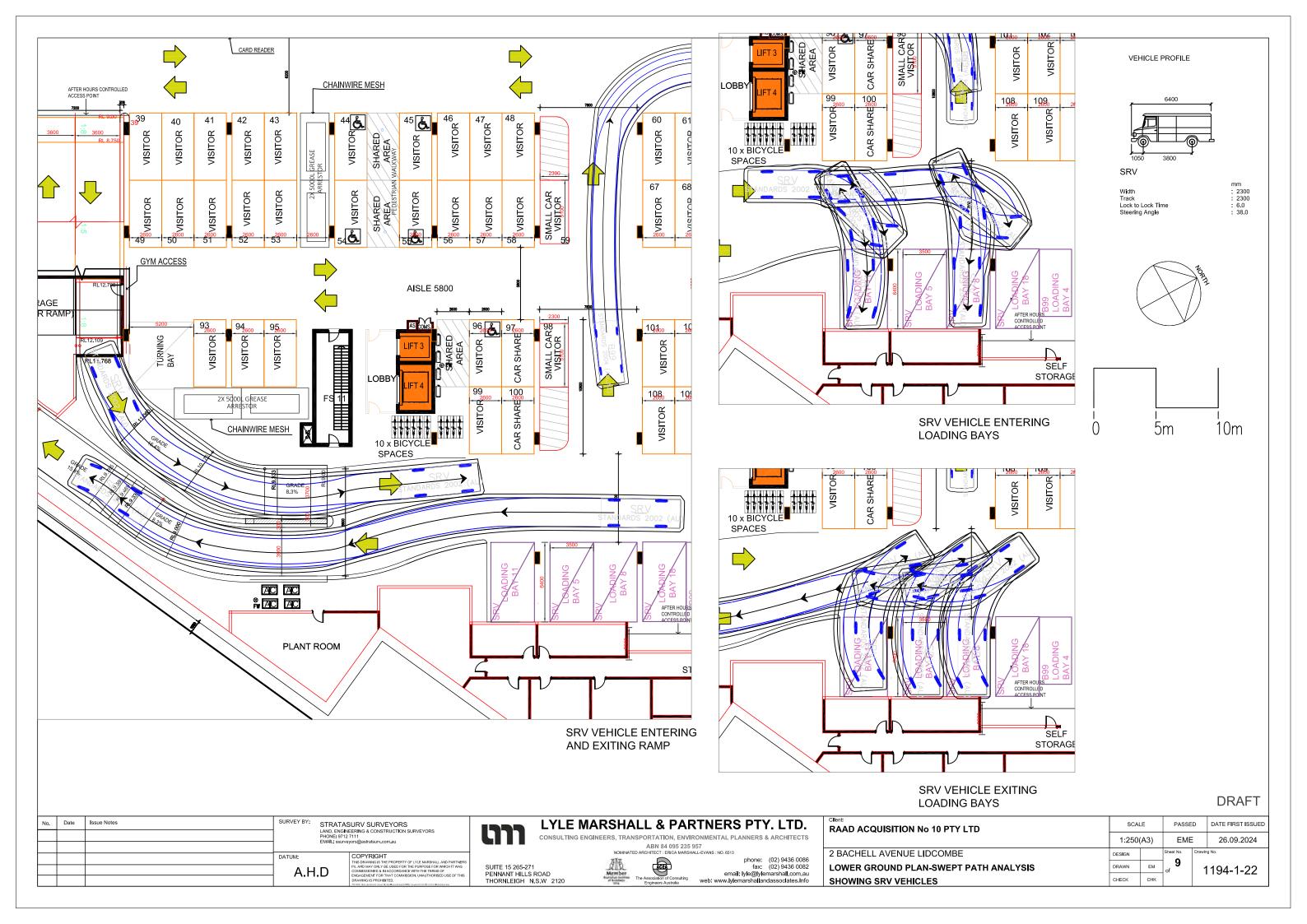

10

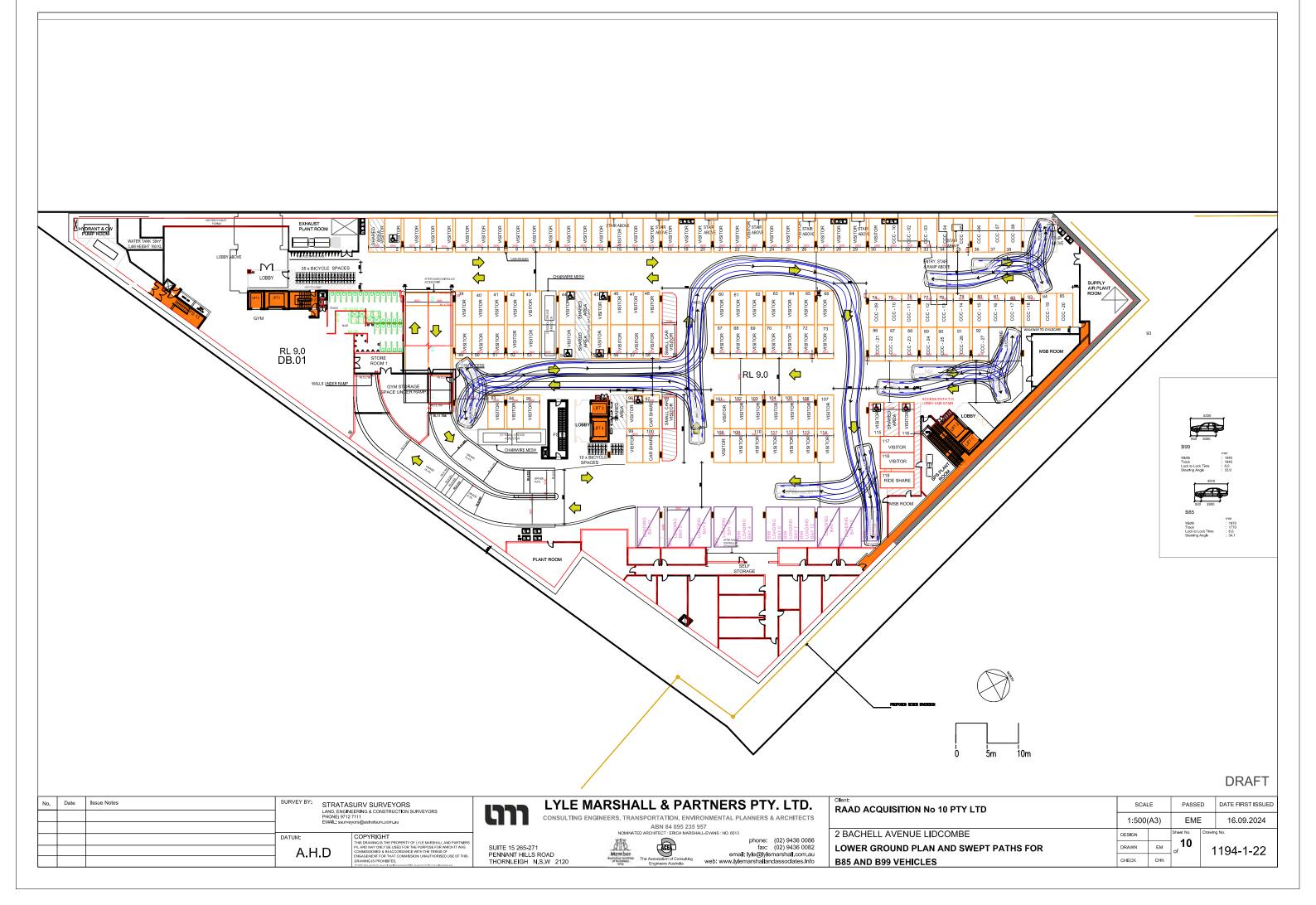
СНК

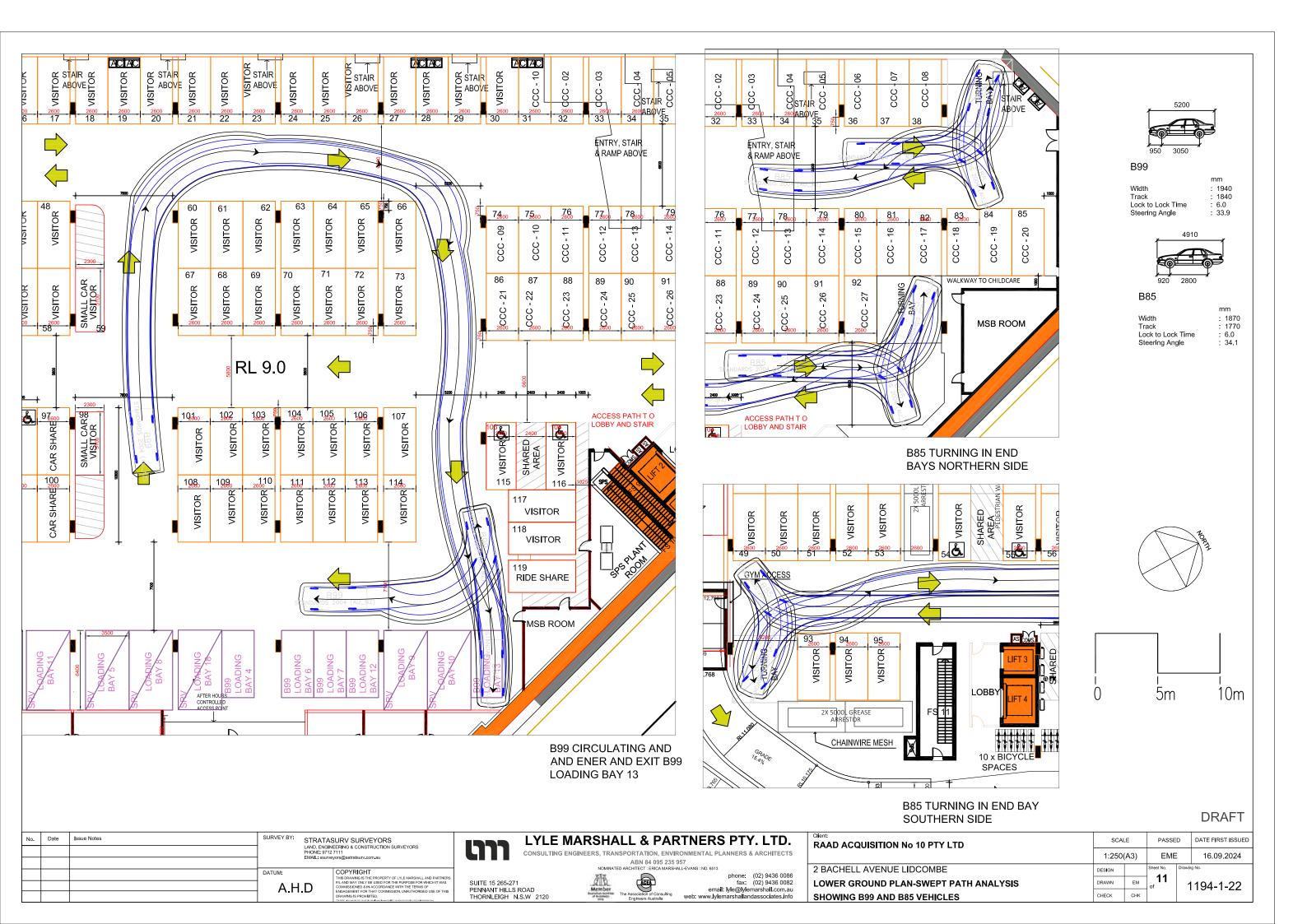
CHECK

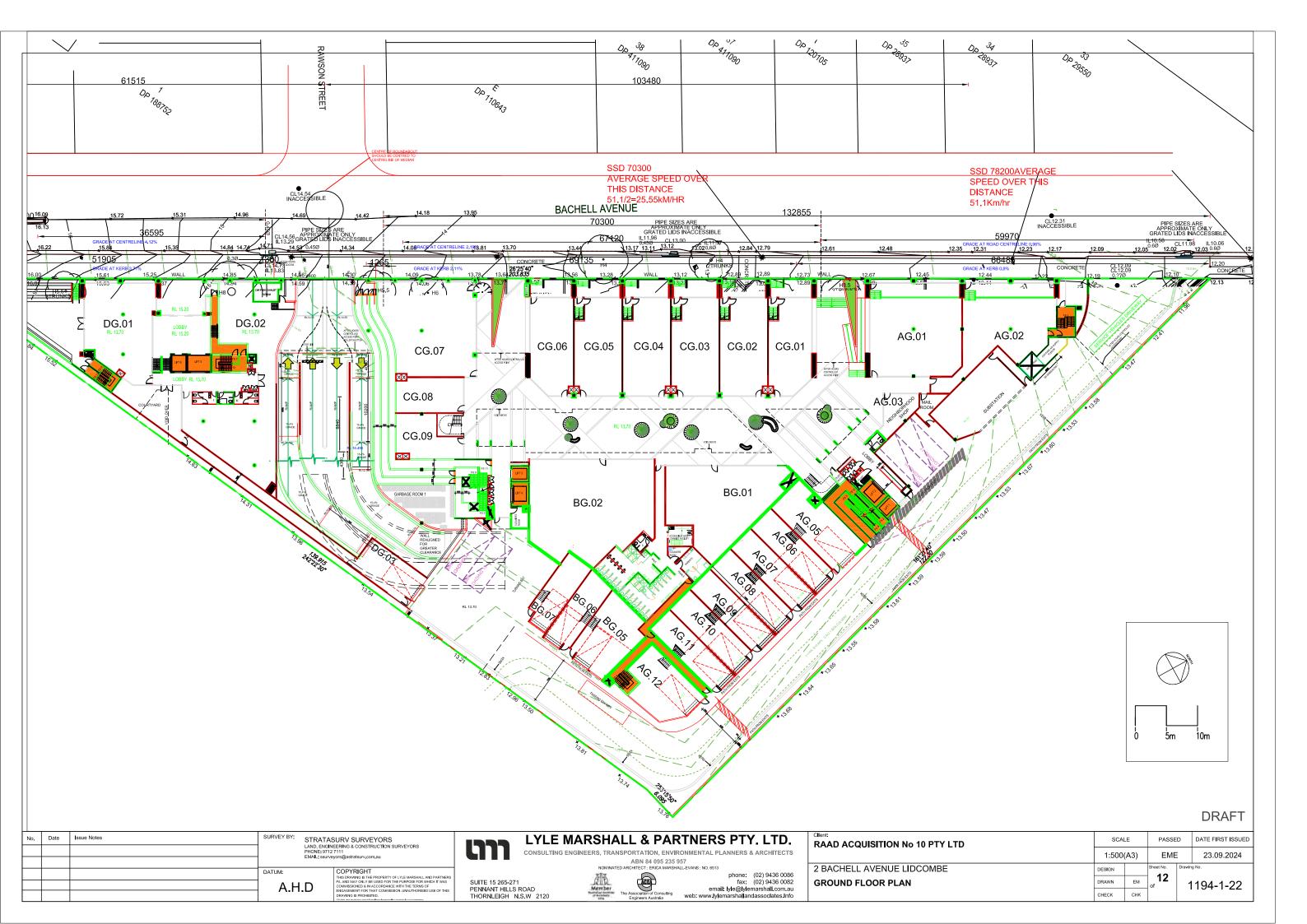

No.	Date	Issue Notes	SURVEY BY:	SURVEY BY: STRATASURV SURVEYORS LAND ENGINEERING & CONSTRUCTION SURVEYORS PHONE: 9712 7111 EMAIL: ssurveyors@astratsurv.com.au		LYLE MARSHALL & PARTNERS PTY. LTD.				Client: RAAD ACQUISITION No 10 PTY LTD	
						CONSULTING ENG	INEERS, TRAM	RANSPORTATION, ENVIRONMENTAL PLANNERS & ARCHITECTS			
						ABN 84 095 235 9			957		
				CODVIDIOUT	4		NOMINAT	ED ARCHITECT : ERICA MARSH/	ALL-EVANS : NO. 6513	2 BACHELL AVENUE LIDCOMBE	
			DATUM:	COPYRIGHT			777		phone: (02) 9436 0086		
				THIS DRAWING IS THE PROPERTY OF LYLE MARSHALL AND PARTNERS P/L AND MAY ONLY BE USED FOR THE PURPOSE FOR WHICH IT WAS	SUITE 15 265-27	1	(317)	ACEA		BASEMENT B1 SWEPT PATHS-DETAIL	
			1 A.H	COMMISSIONED & IN ACCORDANCE WITH THE TERMS OF	PENNANT HILLS		Member		email: lyle@lylemarshall.com.au	DASEIVIENT DI SWEFT FATHS-DETAIL	
] /	ENGAGEMENT FOR THAT COMMISSION. UNAUTHORISED USE OF THIS DRAWING IS PROHIBITED.	THORNLEIGH		Association insultation	The Association of Consulting Engineers Australia	web: www.lylemarshallandassociates.info		

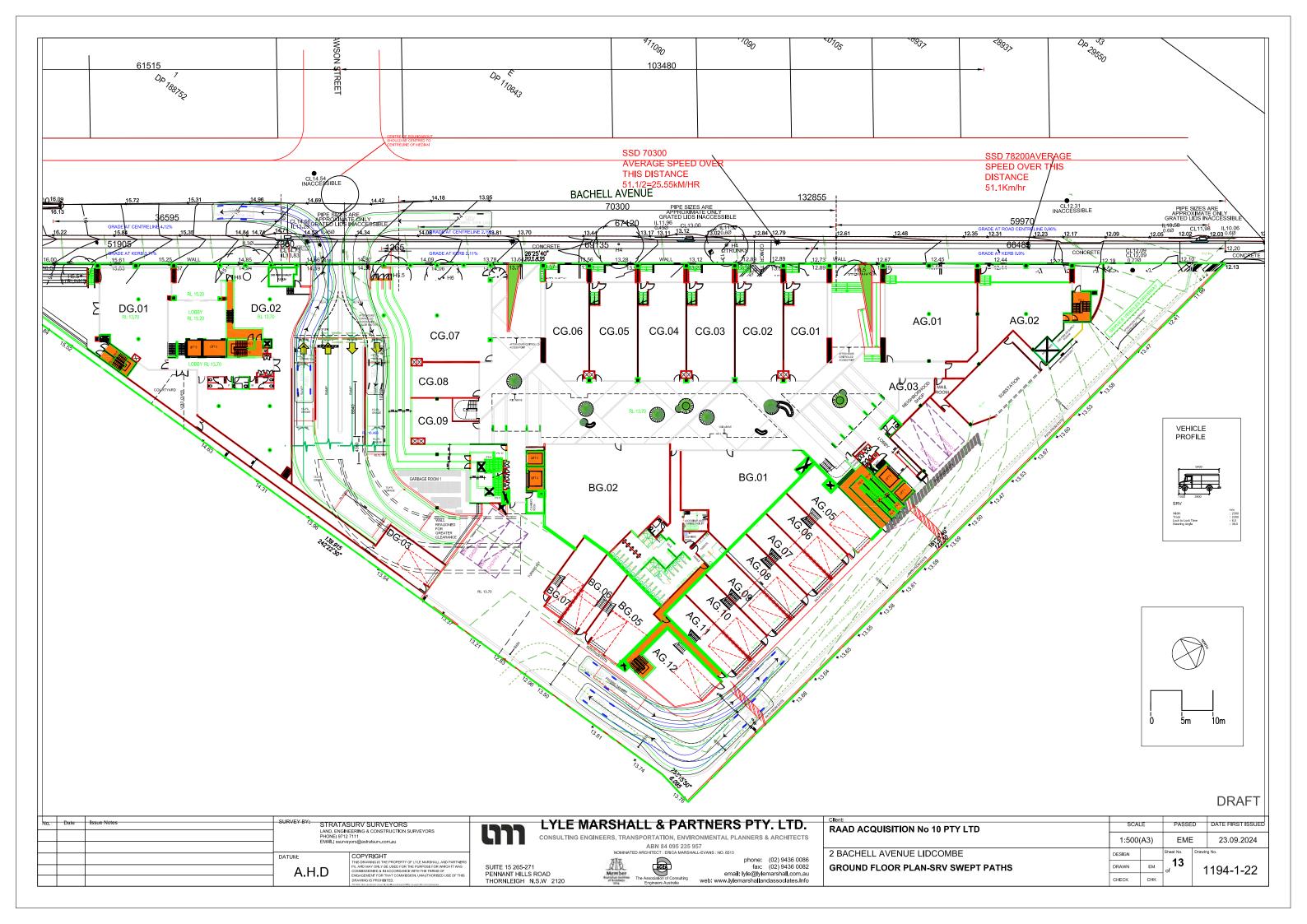


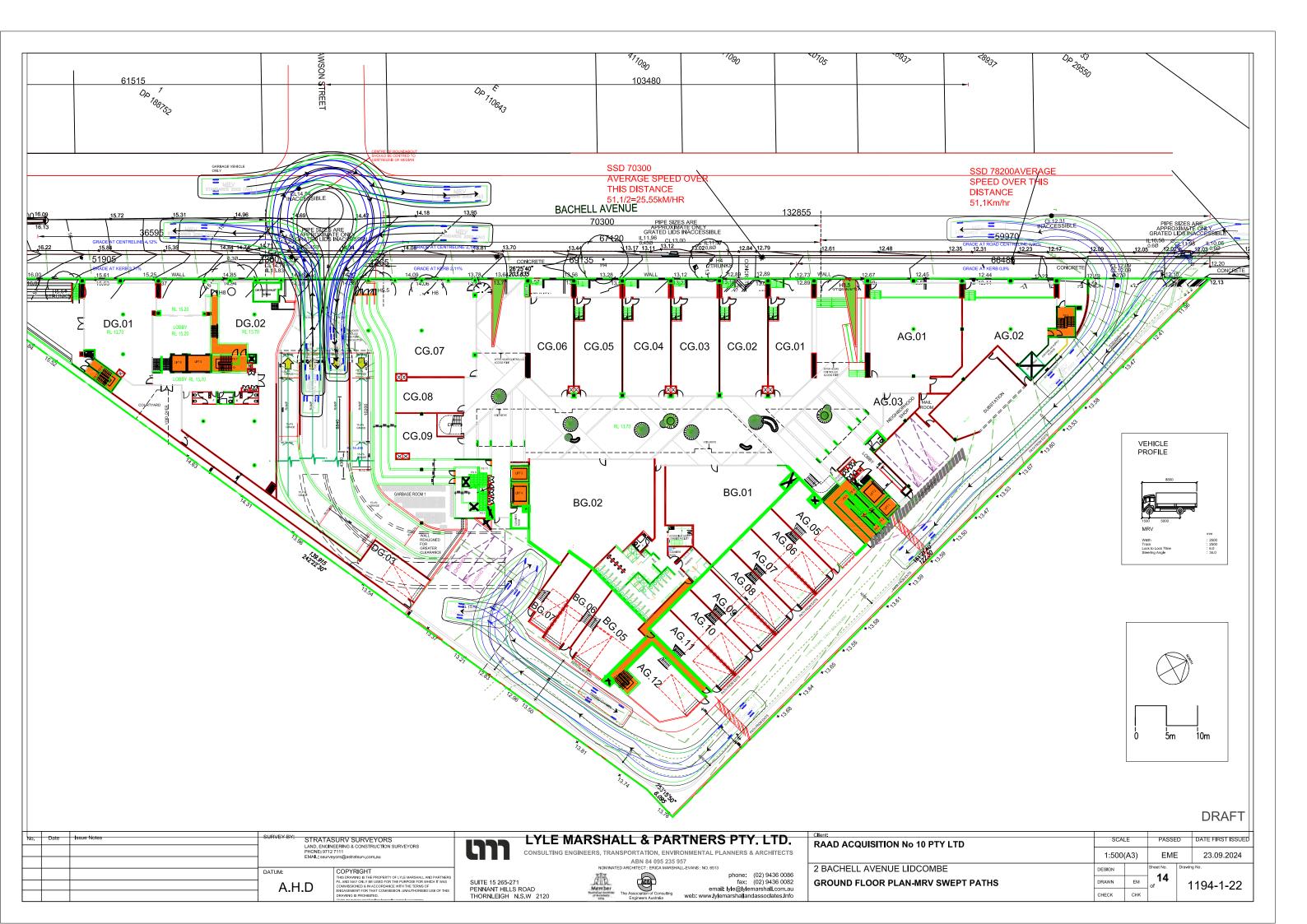


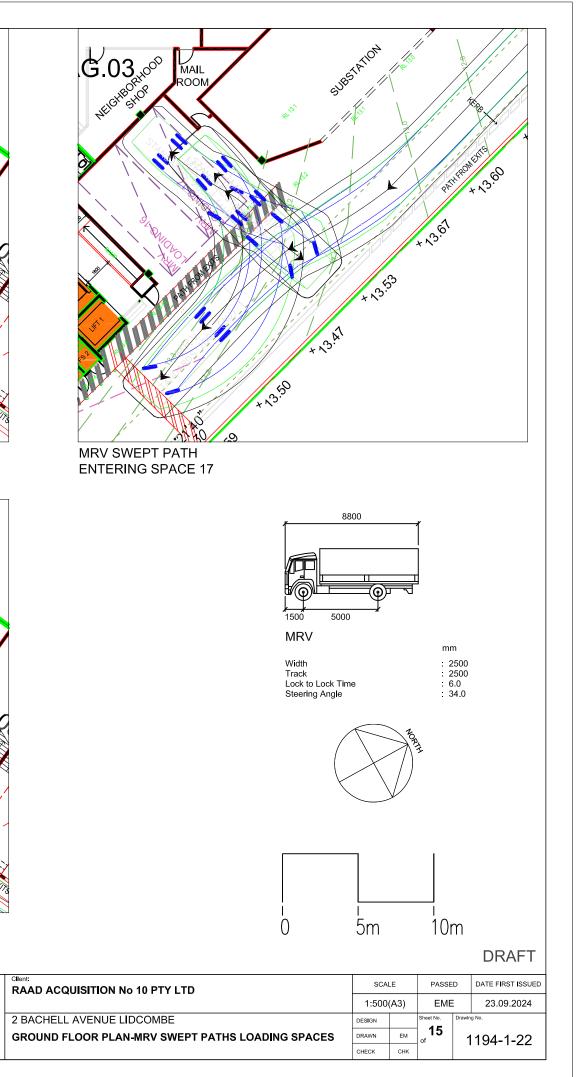

	SCA	E	PASSED		DATE FIRST ISSUED
	1:500	(A3)	EME		26.09.2024
	DESIGN		Sheet No. Drawlr		g No.
P LAYOUT	DRAWN	EM	7A	1194-1-22	
	CHECK	СНК			


DRAFT

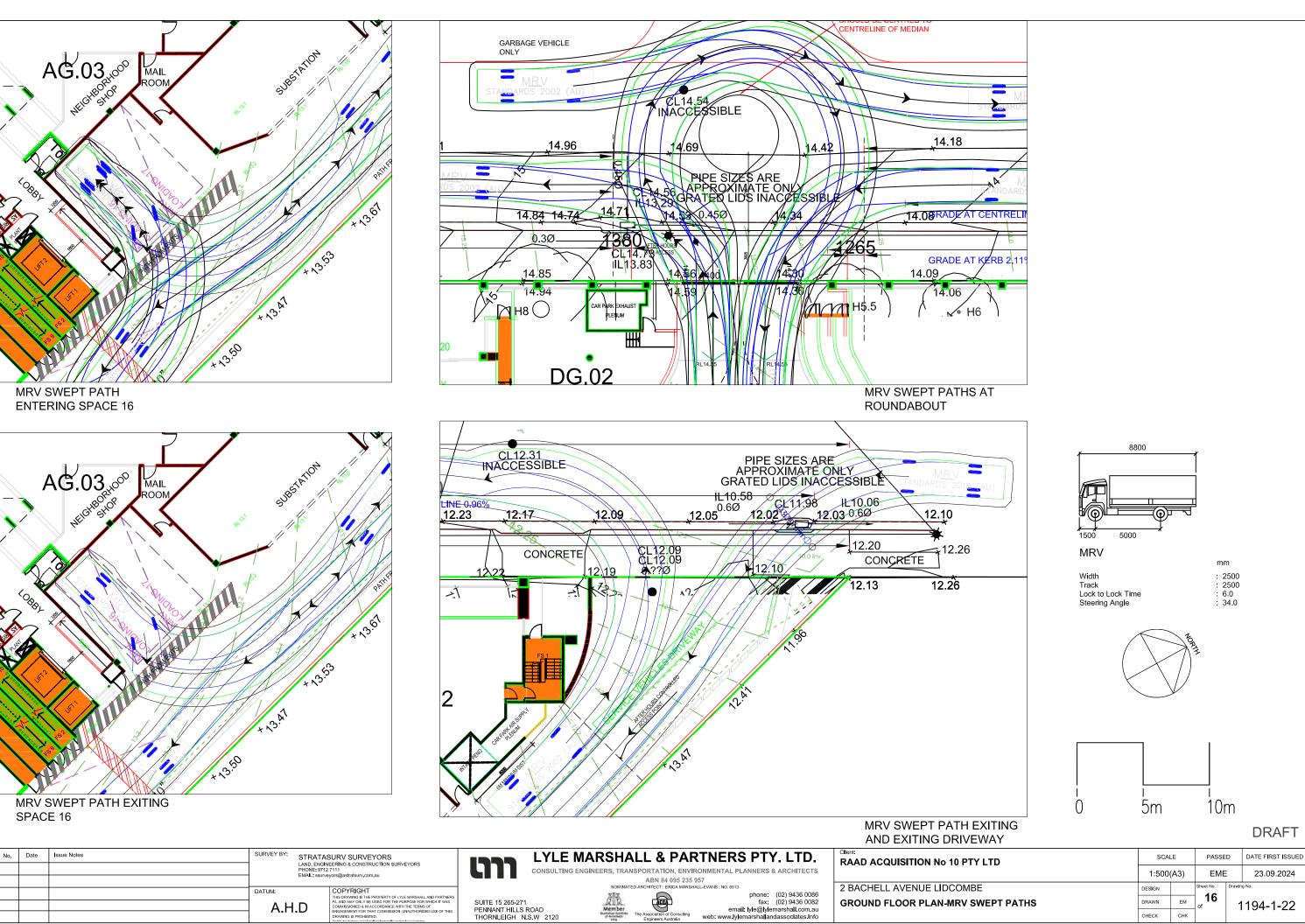




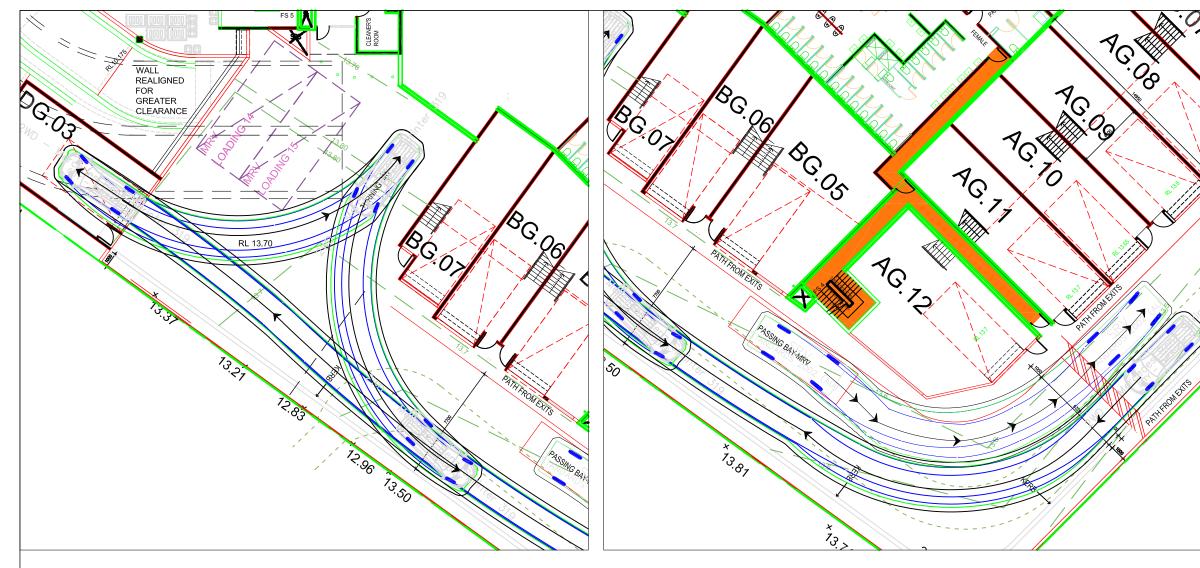




A.H.D

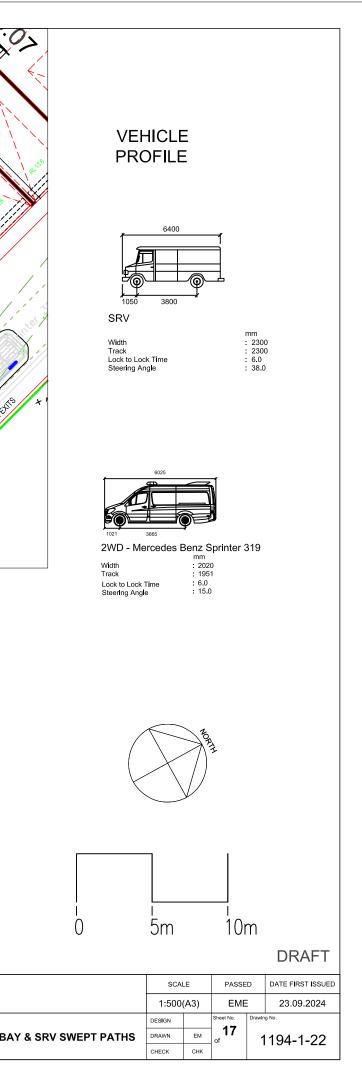

BG

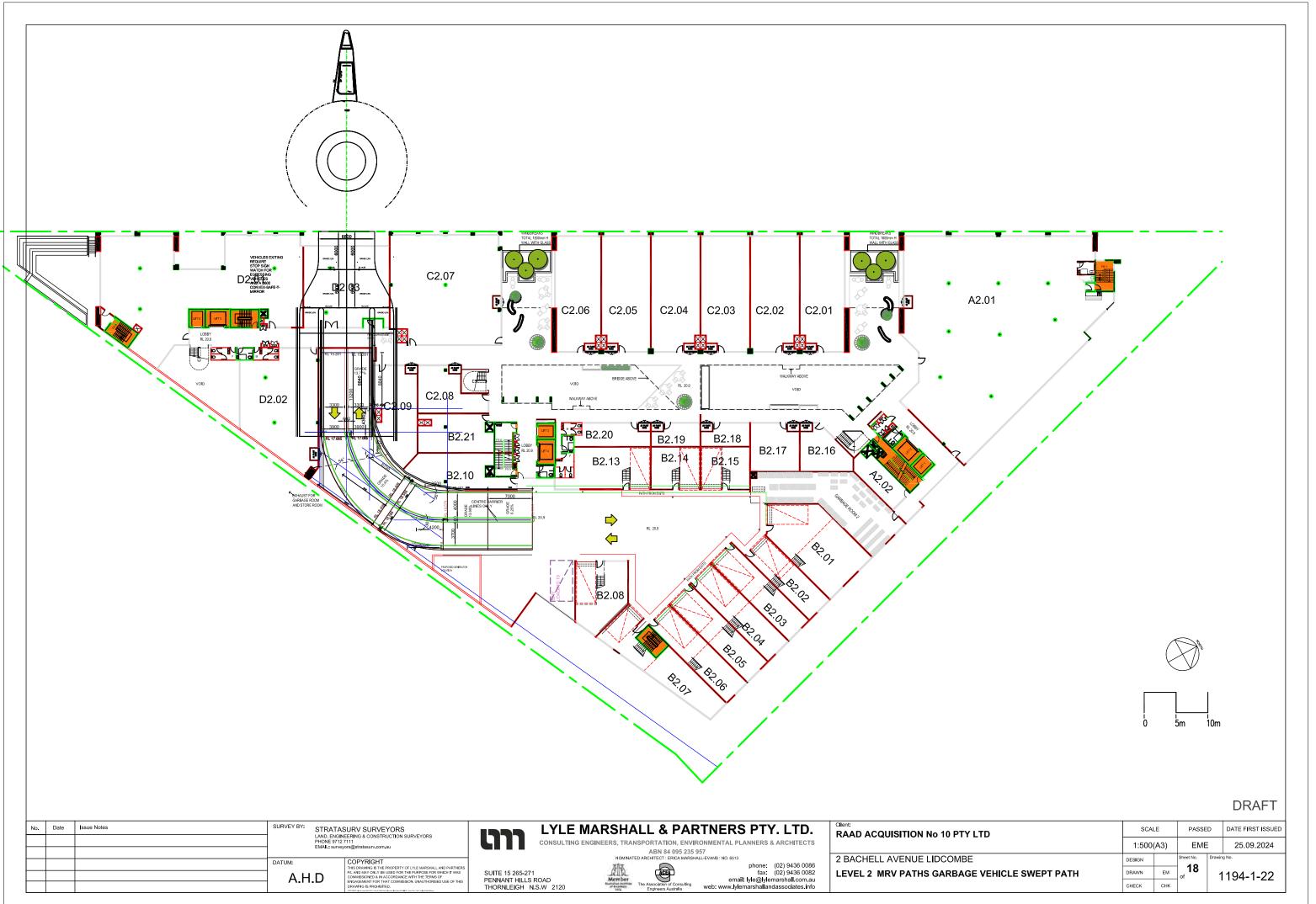
BG


BG

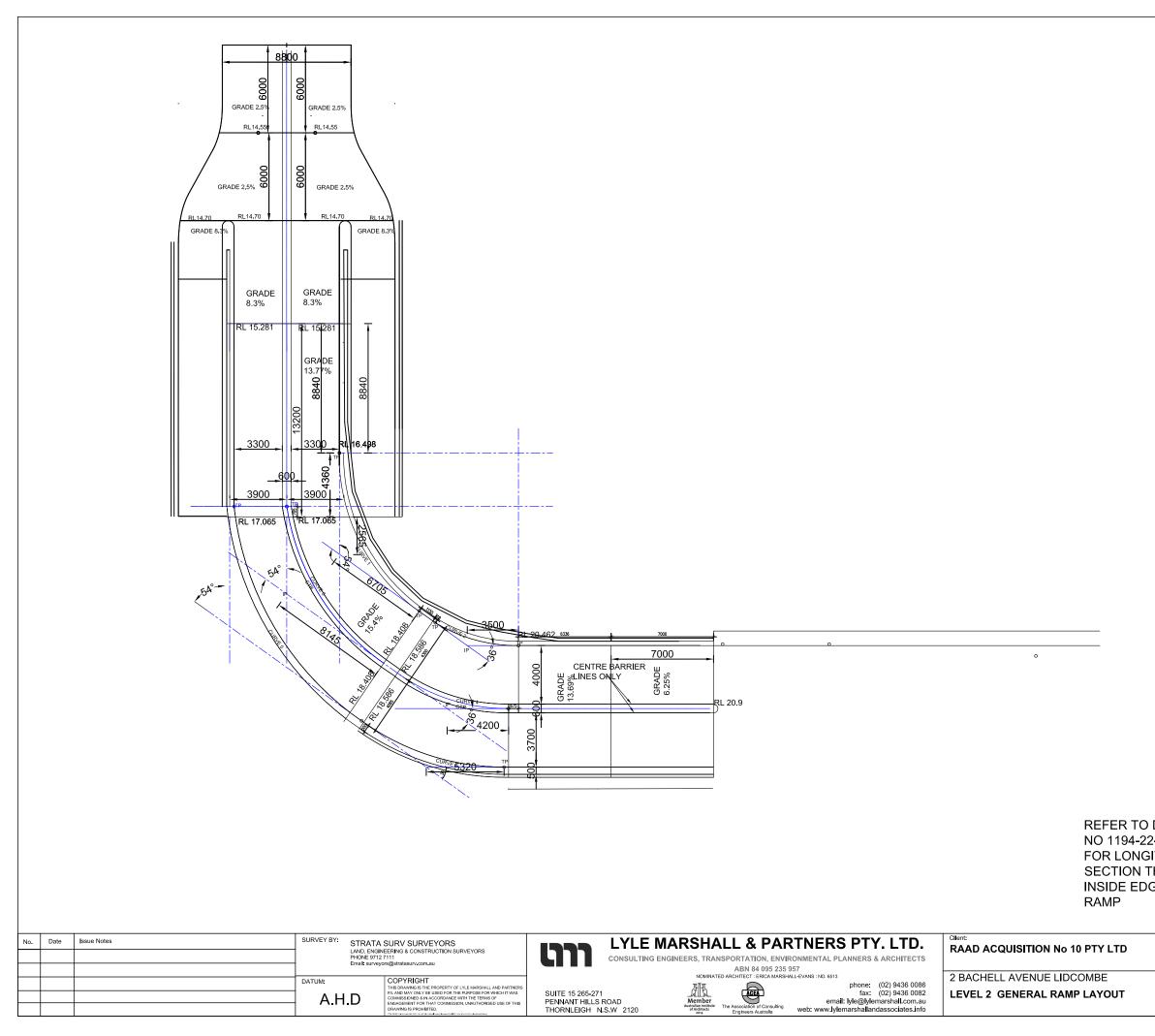
 \cap

ררנו				TNERS PTY. LTD.	Client: RAAD ACQUISITION No 10 PTY LTD
	CONSULTING ENGIN	,	ABN 84 095 235 9 ABN 84 095 235 9 ED ARCHITECT : ERICA MARSH/		2 BACHELL AVENUE LIDCOMBE
SUITE 15 265-271 PENNANT HILLS F THORNLEIGH N.		Member	The Association of Consulting Engineers Australia	phone: (02) 9436 0086 fax: (02) 9436 0082 email: tyle@ylemarshall.com.au web: www.lylemarshallandassoclates.Info	GROUND FLOOR PLAN-MRV SWEPT PA

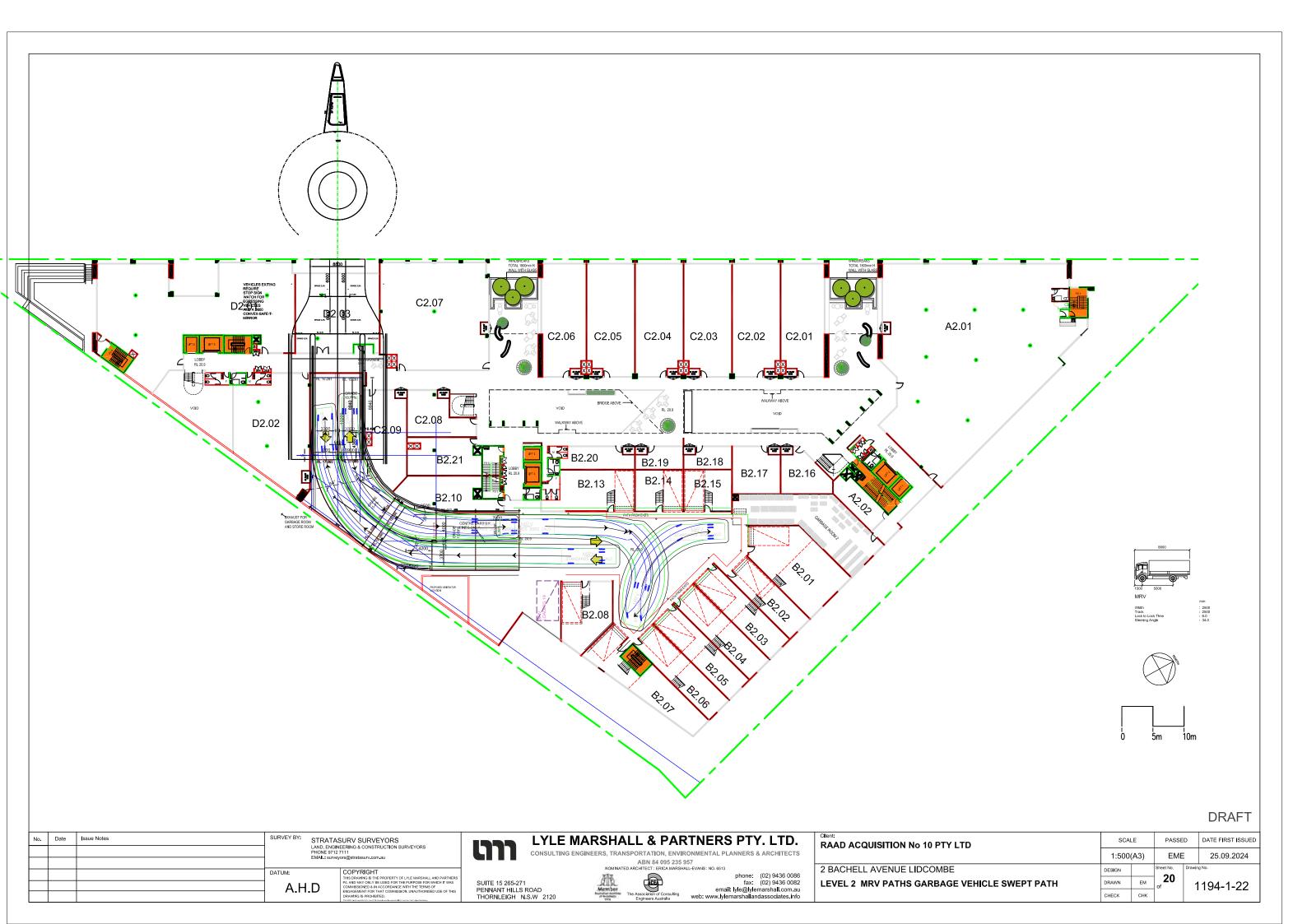

LTD	SCAI	PASSED		
	1:500(A3)		EME	
	DESIGN		Sheet No.	Draw
EPT PATHS	DRAWN	EM	16	
	CHECK	СНК		

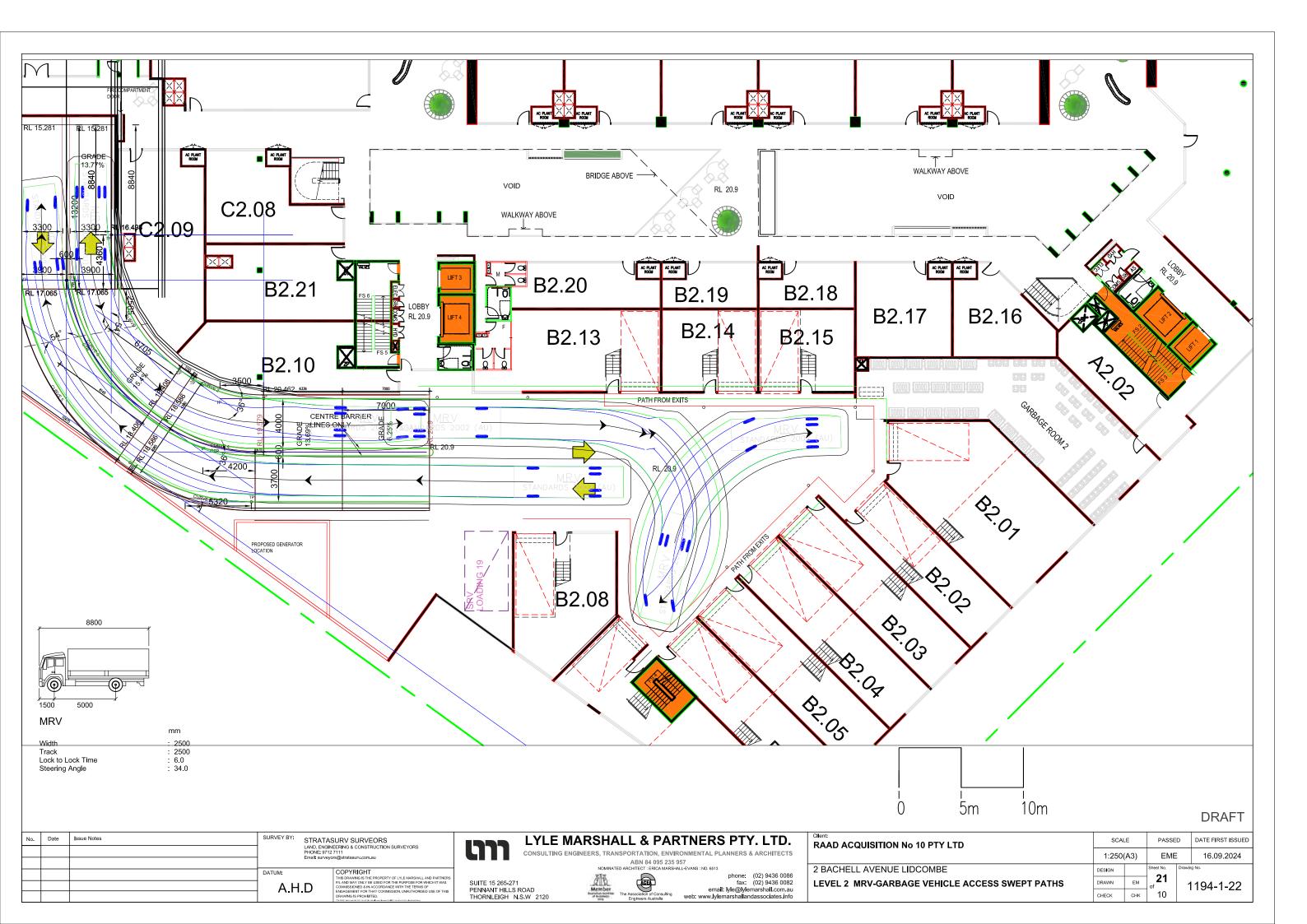


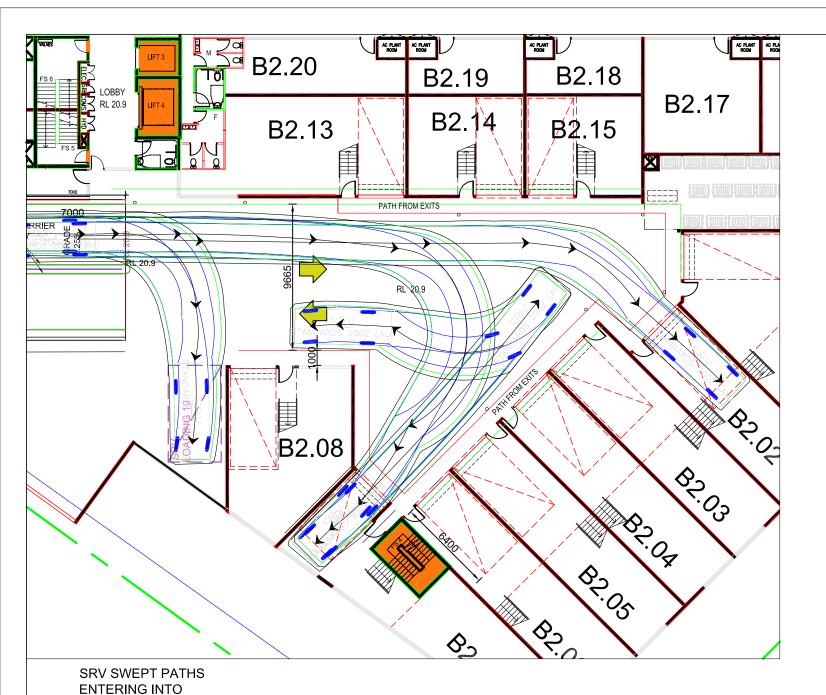
AMBULANCE BAY SWEPT PATH


AMBULANCE VEHICLE AND SRV VEHICLE PASSING

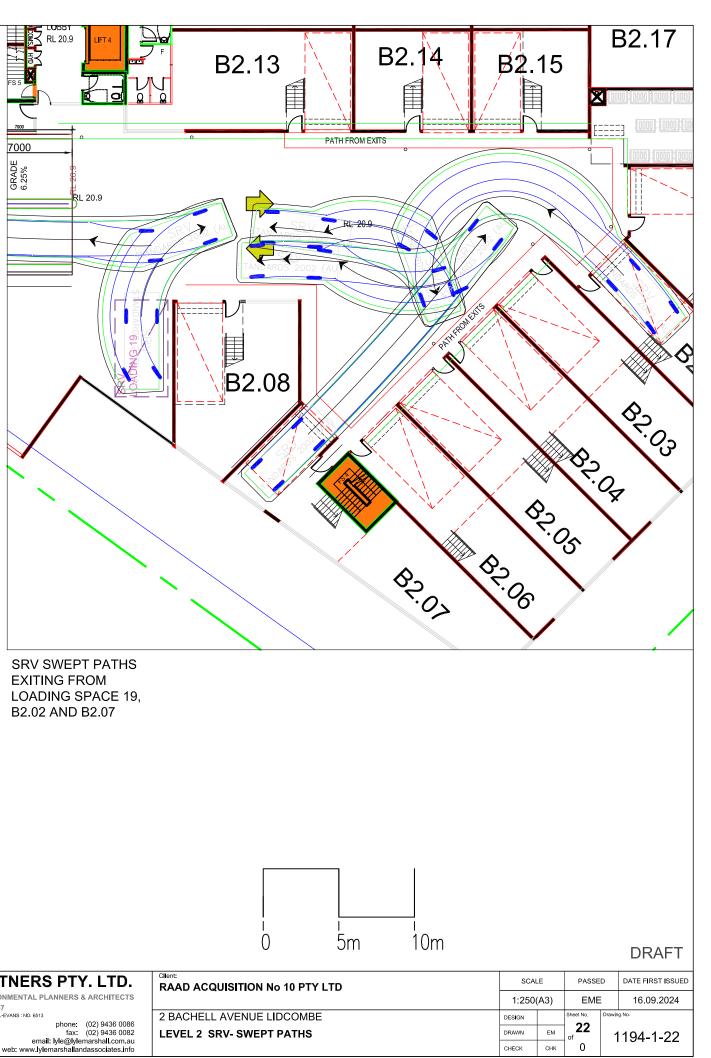
No.	Date	Issue Notes	LAND, ENG PHONE: 97	SURVEY BY: STRATASURV SURVEYORS LAND, ENGINEERING & CONSTRUCTION SURVEYORS PHONE:9712 7111 EMAIL: ssurveyors@astratsurv.com.au				RTNERS PTY. LTD. IRONMENTAL PLANNERS & ARCHITECTS 957	Client: RAAD ACQUISITION No 10 PTY LTD
			A.H.D	COPYRIGHT THIS DRAWNG IS THE PROPERTY OF LYLE MARSHALL AND PARTNERS PIL AND MAY ON YEB USED FOR THE PURPOSE FOR WHICH IT WAS COMMISSIONED & IN ACCORDANCE WITH THE TERMS OF ENASCEMENT FOR THAT COMMISSION, UNAUTHORISED USE OF THIS DRAWING IS PROHIBITED.	SUITE 15 265-271 PENNANT HILLS F THORNLEIGH N.	ROAD Member	The Association of Consulting Engineers Australia	HALL-EVANS: NO. 6513 phone: (02) 9436 0086 fax: (02) 9436 0082 email: lyle@lylemarshall.com.au web: www.lylemarshallandassoclates.Info	2 BACHELL AVENUE LIDCOMBE GROUND FLOOR PLAN-AMBULANCE I






	SCALE		PASSED		DATE FIRST ISSUED	
	1:500	(A3)	EME		25.09.2024	
	DESIGN		Sheet No.	Drawin	g No.	
CLE SWEPT PATH	DRAWN	EM	18 of	1	1194-1-22	
	CHECK	СНК			101122	

		/	\langle	- F	NATH		
				>	RTH		
			1	$\left\langle \right\rangle$)		
		Ţ		Y			
			_				
			٦			I	
						ļ	
	\int		5m	r		10m	
	U			I			
DRAWING							
2-SHEET 23							
ITUDINAL							
GE OF							
						DRAFT	
		SCAI	.E	PASSE	D	DATE FIRST ISSUE	D
		1:250		EME		26.09.2024	_
		DESIGN		Sheet No.	Drawing		
		DRAWN CHECK	ЕМ СНК	of	1	194-1-22	
		UNEON					

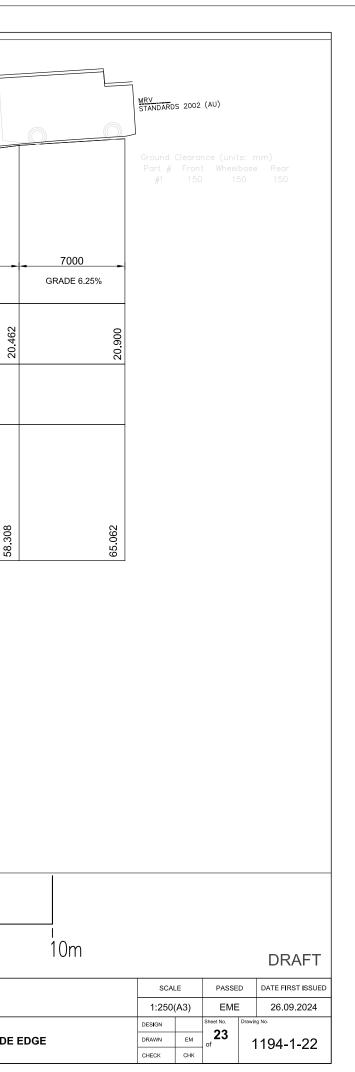


A.H.D

LOADING SPACE 19,

B2.02 AND B2.07

6400



_	STANDARDS 2002 (AU)	BOUNDARY								
				6000	7000	8840	12405	_ 1555	6769	6336
DATUM RL 10.00				GRADE 2.5%	GRADE 8.3%	GRADE 13.7%	GRADE 15.4%		GRADE 15.4%	GRADE 13.69%
DESIGN SURFACE		14.34 14.4	14.55	14.70	15.281	16.498		18.586	19.628	20.462
EXISTING SURFACE		14.34 14.4								
CHAINAGE	-5.745	0.00	9.805	15.805	22.805	31.645		44.040	51.972	58.308

LONGITUDINAL SECTION THROUGH INSIDE EDGE OF RAMP TO LEVEL 2

0 5m Date Issue Notes SURVEY BY: LYLE MARSHALL & PARTNERS PTY. LTD. No. STRATASURV SURVEORS LAND, ENGINEERING & CONSTRUCTION SURVEYORS PHONE: 9712 7111 Email: surveyors@stratasurv.com.au Cller LYLE MARSHALL & PARTNERS PTY. LTD. CONSULTING ENGINEERS, TRANSPORTATION, ENVIRONMENTAL PLANNERS & ARCHITECTS RAAD ACQUISITION No 10 PTY LTD ABN 84 095 235 957 NOMINATED ARCHITECT: ERICA MARSHALL-EVANS: NO. 6513 Phone: (02) 9436 0086 fax: (02) 9436 0086 fax: (02) 9436 0082 email: Me@tylemarshall.com.au web: www.lylemarshallandassociates.info COPYRIGHT THIS DRAWING IS THE PROPERTY OF LYLE MARSHALL AND PARTNERS PL AND MAY ONLY BE USED FOR THE PURPOSE FOR WHICH TWAS COMMISSIONED IS IN ACCORDANCE WITH THE TERMS OF ENGAGEMENT FOR THAT COMMISSION, UNAUTHORISED USE OF THIS DRAWING BY ROFUBITED. 2 BACHELL AVENUE LIDCOMBE DATUM: SUITE 15 265-271 PENNANT HILLS ROAD THORNLEIGH N.S.W 2120 LEVEL 2 LONGITUDINAL SECTION INSIDE EDGE A.H.D

APPENDIX G

APPENDIX G

Possible Mitigation Measure at Church Street/Railway Street For Development Traffic

The Nearmap image in **Figure 10** indicates that it may be feasible to construct a left turn slip lane from Railway Street west to Church Street.

The SIDRA analysis shows that a slip lane would significantly improve the level of Service to A in the AM Peak Hour and toe LoS A in the PM Peak Hour.

Left turn slip lane from west approach to Church Street north. 60 metres.

Table 3.7c Mitigation at Church Street/ R	Railway Street Intersection
---	-----------------------------

No	Location	Sign/ Control	Peak Hour	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (Av)	95a% Back of Queue Length (Veh)	Critical Movement
1	Church Street/ Railway Street	S	AM	С	0.842	35.5	14.5veh 101.7m	RHT from Railway St (E) 84.7 secs
1	Church Street/ Railway Street	S	PM	A	0.614	13.2	5.2veh 36.2m	RHT from Railway St (E) 28.5secs

The mitigation measure is illustrated in **Figure 9**.

Site Layout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

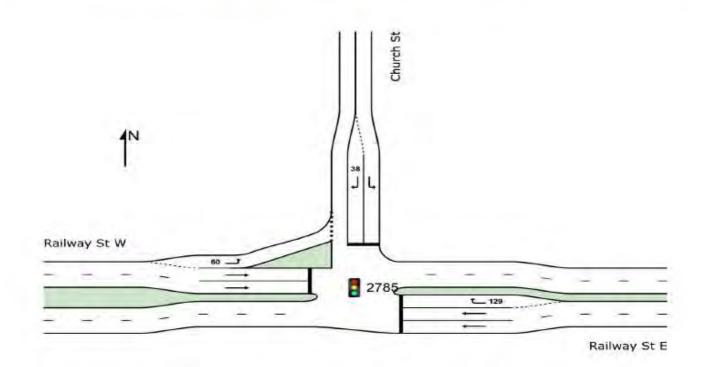


FIGURE 9 FUTURE MITIGATION AT CHURCH STREET AND RAILWAY STREET LIDCOMBE

NORTH

SOURCE: NEARMAPS

LEGEND

FUTURE SLIP LANE LOCATION MITIGATION WORKS

FIGURE 10 RAILWAY STREET AND CHURCH STREET INTERSECTION

INTERSECTION SUMMARY

Site: 2785 [Future Mitigation AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am Site Category: (None)

Signals - Actuated Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Performance Measure	Vehicles:	All MCs	Persons
ravel Speed (Average)	km/h	40.2	40.2 km/h
Fravel Distance (Total)	veh-km/h	2845.2	3414.2 pers-km/h
ravel Time (Total)	veh-h/h	70.8	85.0 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency		0.67	
ravel Time Index		6.33	
Congestion Coefficient		1.49	
5			
Demand Flows (Total)	veh/h	2336	2803 pers/h
Arrival Flows (Total)	veh/h	2336	
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.842	
Practical Spare Capacity	%	6.9	
Effective Intersection Capacity	veh/h	2775	
Control Delay (Total)	veh-h/h	23.05	27.66 pers-h/h
Control Delay (Average)	sec	35.5	35.5 sec
Control Delay (Worst Lane by MC)	sec	84.7	
Control Delay (Worst Movement by MC)	sec	84.7	84.7 sec
Geometric Delay (Average)	sec	1.2	
Stop-Line Delay (Average)	sec	34.3	
dling Time (Average)	sec	27.0	
ntersection Level of Service (LOS)		LOS C	
· · · ·			
95% Back of Queue - Veh (Worst Lane)	veh	31.1	
95% Back of Queue - Dist (Worst Lane)	m	217.7	
Ave. Que Storage Ratio (Worst Lane)		0.27	
Effective Stops (Total)	veh/h	1486	1783 pers/h
Effective Stop Rate		0.64	0.64
Proportion Queued		0.69	0.69
Performance Index		121.5	121.5
Cost (Total)	\$/h	2508.08	2508.08 \$/h
Fuel Consumption (Total)	L/h	228.2	
Carbon Dioxide (Total)	kg/h	536.2	
Hydrocarbons (Total)	kg/h	0.046	
Carbon Monoxide (Total)	kg/h	0.63	
NOx (Total)	kg/h	0.141	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 5.0% 0.0% 0.0%

Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Persons							
Demand Flows (Total)	veh/y	1,121,280	1,345,536 pers/y							
Delay (Total)	veh-h/y	11,065	13,278 pers-h/y							
Effective Stops (Total)	veh/y	713,119	855,743 pers/y							

Travel Distance (Total)	veh-km/y	1,365,679	1,638,815 pers-km/y
Travel Time (Total)	veh-h/y	34,006	40,807 pers-h/y
Cost (Total)	\$/y	1,203,876	1,203,876 \$/y
Fuel Consumption (Total)	L/y	109,513	
Carbon Dioxide (Total)	kg/y	257,357	
Hydrocarbons (Total)	kg/y	22	
Carbon Monoxide (Total)	kg/y	301	
NOx (Total)	kg/y	68	

1 Hours per Year: 480 (Site)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 October 2023 8:49:20 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

MOVEMENT SUMMARY

Site: 2785 [Future Mitigation AM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

AM Peak Hour: 7:45-8:45am

Site Category: (None) Signals - Actuated Isolated Cycle Time = 150 seconds (Site User-Given Phase Times)

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Railwa	ay St E													
5	T1	All MCs	648	0.0	648	0.0	0.267	16.0	LOS B	11.1	78.0	0.50	0.44	0.50	49.6
6	R2	All MCs	197	0.0	197	0.0	0.842	84.7	LOS F	14.5	101.7	1.00	0.79	1.00	24.7
Appro	bach		845	0.0	845	0.0	0.842	32.0	LOS C	14.5	101.7	0.62	0.52	0.62	41.4
North	: Chur	ch St													
7	L2	All MCs	234	0.0	234	0.0	*0.300	40.8	LOS C	11.1	77.4	0.68	0.76	0.68	36.5
9	R2	All MCs	48	0.0	48	0.0	0.040	46.6	LOS D	2.3	16.2	0.69	0.69	0.69	37.8
Appro	bach		282	0.0	282	0.0	0.300	41.8	LOS C	11.1	77.4	0.68	0.75	0.68	35.3
West	Railw	ay St W													
10	L2	All MCs	44	0.0	44	0.0	0.029	20.2	LOS B	0.3	2.0	0.13	0.58	0.13	53.9
11	T1	All MCs	1165	0.0	1165	0.0	*0.618	37.2	LOS C	31.1	217.7	0.77	0.69	0.77	42.8
Appro	bach		1209	0.0	1209	0.0	0.618	36.5	LOS C	31.1	217.7	0.75	0.69	0.75	40.5
All Ve	hicles		2336	0.0	2336	0.0	0.842	35.5	LOS C	31.1	217.7	0.69	0.64	0.69	40.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 October 2023 8:49:20 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

INTERSECTION SUMMARY

Site: 2785 [Future Mitigation PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

ntersection Performance - Hourly Va			D
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	50.2	50.2 km/h
Travel Distance (Total)	veh-km/h	2904.9	3485.9 pers-km/h
Travel Time (Total)	veh-h/h	57.8	69.4 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency		0.84	
Travel Time Index		8.19	
Congestion Coefficient		1.19	
Demand Flows (Total)	veh/h	2417	2900 pers/h
Arrival Flows (Total)	veh/h	2417	
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.614	
Practical Spare Capacity	%	46.6	
Effective Intersection Capacity	veh/h	3936	
Control Delay (Total)	veh-h/h	8.89	10.67 pers-h/h
Control Delay (Average)	sec	13.2	13.2 sec
Control Delay (Worst Lane by MC)	sec	28.5	
Control Delay (Worst Movement by MC)	sec	28.5	28.5 sec
Geometric Delay (Average)	sec	1.6	
Stop-Line Delay (Average)	sec	11.6	
dling Time (Average)	sec	8.3	
ntersection Level of Service (LOS)		LOS A	
		0.5	
95% Back of Queue - Veh (Worst Lane)	veh	9.5	
95% Back of Queue - Dist (Worst Lane)	m	66.8	
Ave. Que Storage Ratio (Worst Lane)		0.10	
Effective Stops (Total)	veh/h	1567	1880 pers/h
Effective Stop Rate		0.65	0.65
Proportion Queued		0.74	0.74
Performance Index		83.4	83.4
	¢/b	0107 74	0107 74 ¢/b
Cost (Total)	\$/h	2187.74	2187.74 \$/h
Fuel Consumption (Total)	L/h	221.1	
Carbon Dioxide (Total)	kg/h	519.7	
Hydrocarbons (Total)	kg/h	0.044	
Carbon Monoxide (Total)	kg/h	0.63	
NOx (Total)	kg/h	0.144	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 8.0% 6.8% 0.0%

Intersection Performance - Annual Values							
Performance Measure	Vehicles:	All MCs	Persons				
Demand Flows (Total)	veh/y	1,160,160	1,392,192 pers/y				
Delay (Total)	veh-h/y	4,268	5,122 pers-h/y				

Effective Stops (Total)	veh/y	752,112	902,534 pers/y
Travel Distance (Total)	veh-km/y	1,394,360	1,673,233 pers-km/y
Travel Time (Total)	veh-h/y	27,752	33,302 pers-h/y
Cost (Total)	\$/y	1,050,114	1,050,114 \$/y
Fuel Consumption (Total)	L/y	106,150	
Carbon Dioxide (Total)	kg/y	249,452	
Hydrocarbons (Total)	kg/y	21	
Carbon Monoxide (Total)	kg/y	301	
NOx (Total)	kg/y	69	

1 Hours per Year: 480 (Site)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 October 2023 8:47:24 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9

MOVEMENT SUMMARY

Site: 2785 [Future Mitigation PM: Church St/Railway St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Railwa	ay St E													
5	T1	All MCs	753	0.0	753	0.0	0.287	4.3	LOS A	4.1	28.4	0.47	0.41	0.47	56.8
6	R2	All MCs	219	0.0	219	0.0	*0.468	28.5	LOS B	5.2	36.2	0.98	0.78	0.98	39.8
Appro	bach		972	0.0	972	0.0	0.468	9.7	LOS A	5.2	36.2	0.58	0.49	0.58	52.5
North	: Chur	ch St													
7	L2	All MCs	384	0.0	384	0.0	0.574	19.9	LOS B	7.8	54.7	0.86	0.82	0.86	43.8
9	R2	All MCs	76	0.0	76	0.0	*0.171	27.5	LOS B	1.7	12.0	0.93	0.73	0.93	43.0
Appro	bach		460	0.0	460	0.0	0.574	21.2	LOS B	7.8	54.7	0.87	0.80	0.87	43.6
West:	Railw	ay St W													
10	L2	All MCs	27	0.0	27	0.0	0.021	6.7	LOS A	0.1	0.8	0.30	0.60	0.30	53.5
11	T1	All MCs	958	0.0	958	0.0	*0.614	13.2	LOS A	9.5	66.8	0.85	0.74	0.85	51.1
Appro	bach		985	0.0	985	0.0	0.614	13.0	LOS A	9.5	66.8	0.83	0.73	0.83	51.2
All Ve	hicles		2417	0.0	2417	0.0	0.614	13.2	LOS A	9.5	66.8	0.74	0.65	0.74	50.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 17 October 2023 8:47:24 AM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2023-10-13.sip9 **APPENDIX H**

APPENDIX H

The probability of Delay has been calculated for turning movements at the intersection for left and right turning vehicles.

$$\frac{1 \cdot obahlehy of Dolay PM}{left hum defartures require 4 sec gap in a flow
of 538 web/hm
probablehy delay = 1 - pool(gab 7 4 secs)
= 1 - e 538×4
= 1 - e 538×4
= 1 - e 538×4
= 1 - e 53600 = 1 - e
= 1 - '55 = 0.45
Min Cembines flow of (538+213) 751 web/hu.
Inobability of delay = 1 - prob (gab 7 5 suc)
1 - e - NT = 1 - e 3600
= 1 - e - 1:04305
= 1 - e - 1:04305
= 1 - 0.352 = 0.648$$

$$\frac{\text{DELAYS TO DEPARTING VEHICLES}}{\text{left lum defarture } \frac{1}{Ne^{-}NT} - \frac{1}{N} - T}$$

$$W_{L} = \frac{1}{Ne^{-}NT} - \frac{1}{N} - T$$

$$= \frac{1}{1494} \frac{1}{494} \frac{1}{2} - \frac{3600}{538} - 4$$

$$= \frac{1}{1494} \frac{1}{484} \frac{1}{8} \frac{1}{55} - \frac{1}{6} \frac{1}{69} - 4$$

$$= \frac{1}{10792} - \frac{1}{6} \frac{1}{69} - 4$$

$$= \frac{1}{12} \frac{1}{63} - \frac{1}{1069} = \frac{1}{194} \frac{1}{5265} \frac{1}{8}$$

APPENDIX I

RAAD PROPERTY ACQUISITION No 10 PTY LTD

SUPPLEMENTARY REPORT TECHNICAL WORKING PAPER NO 1

2 BACHELL AVENUE LIDCOMBE

PARKING RATES, TRIP DISTRIBUTION AND TRAFFIC GENERATION RATES FOR PROPOSED DEVELOPMENT SITE

Prepared by:

Lyle Marshall & Partners Pty Ltd Consulting Engineers, Architects Transportation and Environmental Planners

Suite 31, 401 Pacific Highway ARTARMON NSW 2064

Phone:(02) 9436-0086Email:lyle@lylemarshall.com.au

Job No.: 1194-22 Report No.: 15/23

OCTOBER 2023

CONTENTS

1.0	INTRODUCTION1	
	.1 Scope of Report	
2.0	PARKING RATES2	•
2	2.1 Parking for Specialised Retail Use – Comparative Surveys Reviewed	
	for Bulky Goods Use2	
	2.1.1 DCP Controls2	
	2.1.2 RMS Guide2	
	2.1.3 Survey Data 3	j
2	2.2 Parking for Dog Day Care Centre – Comparative Approved Premises	_
	for Dog Day Care Use5	
	2.3 Justification for Shared Parking6	j
3.0	TRIP DISTRIBUTION7	J
3	8.1 Trip Distribution for Local Customer, Café, Restaurant, Gymnasium,	
	Childcare and Dog Daycare Use and Food and Drink7	'
3	8.2 User/Customers Travelling to Specialised Retail Use	
3	8.3 Employees/Workers Travelling to and from the Site	ŀ
4.0	TRAFFIC GENERATION RATES	
4	I.1 Proposed Traffic Generation Rates17	,
5.0	SUMMARY	

LIST OF FIGURES

FIGURE 1a	AM Peak Hour Travel Time 10 Minutes to the Site for Local Users
FIGURE 1b	PM Peak Hour Travel Time 10 Minutes to the Site for Local Users
FIGURE 1c	Customer/Users to and from Childcare Centre and Cafe
FIGURE 2a	Customer/Users Travelling for Specialised Retail Hotel Use
FIGURE 2b	Locations of Nearest Specialised Retail Centres
FIGURE 3a	Employees Travelling to Work
FIGURE 3b	Employees Travelling from Work

APPENDIX 1

Surveys carried out at the Hound Lounge, 212-220 Parramatta Road Annandale on 18/09/2023 from 7:00 am to 9:00 am and on 18/09/2023 from 3:45 pm to 6:00 pm.

APPENDIX 2

NSW Planning Circular PS 18-008 Amendments to Retail Land Use Definitions Pages 1 and 6.

1.0 INTRODUCTION

1.1 Scope of Report

This report has been prepared in accordance with the *CDCP 2021 Part G3 Parking* and where there is no specific rate, justification is provided through comparable survey data.

This report details the following: -

- 1. Parking rates for specialised retail and doggy daycare. The purpose is to provide Council an alternative method for the calculation of parking where there is no DCP rate provided or TfNSW(RMS) rate. This methodology is based on survey data.
- 2. Trip distribution for local customers for the café, restaurant, childcare centre and gymnasium and doggy daycare users, customer travelling to and from the site for specialised retail use and workers/employees travelling to the site from employment and the routes taken on the area wide network.
- 3. Justification for shared parking between uses (gymnasium and office).

2.0 PARKING RATES

2.1 Parking for Specialised Retail Use – Comparative Surveys Reviewed for Bulky Goods Use

Planning Circular PS 18-008 issued by the NSW Department of Planning and Environment on 31st August 2018 has replaced the definition for bulky goods premises with "specialised retail premises."

The Purpose of the Amendment was stated as "Many specialised retailers no longer require the capacity to store large quantities of goods in their shops as customers order from the retailer and goods are dispatched from a central warehouse direct to the customer at a later date. This showroom style model may also negate the need for customer loading facilities."

The types of goods that fall within the definition of "specialised retail premises" include:-

- animal supplies including equestrian and pet goods
- automotive parts and accessories
- camping, outdoor and recreation goods
- electric light fittings
- floor, wall and window coverings
- furniture, bedding, furnishings, fabric and manchester and homewares
- household appliances and fittings
- household electrical goods and home entertainment goods
- party supplies
- swimming pools and spas
- baby and children's goods, children's play equipment and accessories
- barbeques, fireplaces and gas appliances
- sporting, cycling, leisure, fitness goods and accessories

A copy of this Planning Circular is located in **Appendix 2** of this report.

2.1.1 DCP Controls

Table 2 of CDCP Part G does not provide a rate for specialised retail premises or bulky goods retail, and therefore the following note applies:

"Where a parking rate has not been specified in the table, the Guide to Traffic Generating Developments shall be used to calculate the parking requirements for the proposed development. Alternatively, a parking study may be used to determine the parking, subject to prior approval by Council".

2.1.2 RMS Guide

The RMS Guide to Traffic Generating Developments does not have a specific rate for Bulky Goods retail (the previous land use definition). Furthermore, the RMS Guide directs the reader to refer to the report Land Use Traffic Generation – Date and Analysis 18 – Bulky Goods Retail Stores. Technical direction TDT 2013/04a updated the counts for, amongst other uses, Bulky Goods Retail Stores.

(2.1.2 continued.)

The most similar store is the neighbouring Harvey Norman Auburn, which has 14,849sm GFA. There are 350 parking spaces onsite equating to 2.36 spaces/100sqm GFA.

This method considers a revised parking rate for specialised retail premises based on count data from similar venues.

2.1.3 Survey Data

Table 2.1A Applied Rates to 2 Bachell Avenue Lidcombe

Facility	GFA Area	Parking Rate	Requirement
Specialised Retail	3625	1.403 spaces/100m ²	50.875(51)
	4	TO (

Note: This equates to 1 space per 73.1sqm

The following surveys are prepared by TTW Report No 991597.

Table 2.1B Parking Generation Rates based on Surveys

Tenancy	Areas	Thursday rate (spaces/100m ²)	Sunday rate (spaces/100m ²)
Harvey Norman Furniture store, Auburn	7,500	0.6	1.4
Harvey Norman White Goods/Electrical, Auburn	4,000	2	2.85
Freedom Furniture, Gladesville	-	0.7	1.5
Harvey Norman, Wiley Park	5,000	1	2
Harvey Norman, Miranda	4,500	-	1.3
Average Rate		1.075	1.81

Source: Part extracts from Project Planning Associates. 1995.

(2.1.3 continued.)

The following surveys are from the *TfNSW(RMS)* Publication Land Use *Traffic Generation Analysis 18 Bulky Goods and Retail Stores*.

Store	Location	GFA	GFLA	Parking per 10	0m ² GFA
31016	Location	GFA	GFLA	Thursday PM	Sunday PM
Nick Scali	Auburn	6885	4865	0.3	1.05
Keith Lord	Ashfield	7104	6924	0.34	0.27
Mills & Moore	Chatswood	1345	1345	0.34	0.57
IKEA	Gordon	2288	2216	1.25	3.92
Brodie Lighthouse	Manly Vale	435.5	435.5	2.76	5.19
Barbeques Galore	Kogarah	288	288	1.49	2.49
Harvey Norman	Fairfield	3005	3005	0.57	0.6
Bing Lee	Eastwood	528	528	1.7	1.14
BBC Hardware	Marrickville	2064	2064	0.58	0.97
Betta Stores	Kingsford	459	459	0.22	0.65
			14564.5	0.958/100m ²	1.685/100m ²

Table 2.1C Parking Demand Bulky Goods StoresSurveys by Traffic and Transport May 1990

The following, as stated in **Table 9.0**, is a Comparative Survey Analysis from *TfNSW(RMS) TDT/2013/04a*.

Table 2.1D

Site No	Туре	Location	GFA	Thursday Rate /100m ²	Sunday Rate/100m ²
BG1	Freedom	Balgowlah	4000	0.65	0.91
BG2	Harvey Norman	Auburn	14849	0.90	1.64
BG3* outlier	Retravision	Springwood	600	3.17	2.17
BG4	Domayne	Kotara	6029	0.68	0.85
BG5	Bing Lee	Warwilla	1200	2.0	2.25
BG6	Fantastic	South Nowra	1700	0.41	0.35
Average				1.30/100m ²	1.36/100m ²

* Outlier as was within an isolated area

The following is survey data from *Traffic Report No 10830/2* prepared by Colston Budd Rogers and Kafes Pty Ltd prepared for an approved development 108 Woodpark Road Smithfield DA 2018/132. The report used surveys at Belrose Supa Centre as shown in **Table 2.1E**. The parking demand rate is stated below.

(2.1.3 continued.)

Table 2.1E

Site No	Туре	Location	GFA	Total Parking Demand	Sunday Rate/100m ²
	Supacentre	Belrose	20004	263	0.76/100m ²

The approved development adopted a rate of 1 space per $70m^2$ or $1.43/100m^2$. The range is between $1.11 - 1.30/100m^2$ for Thursday PM and Sunday $0.76-1.685/100m^2$. If we take the average Sunday rate of $1.403/100m^2$ this equates to 51 spaces for $3625m^2$ GFA.

2.2 Parking for Dog Day Care Centre – Comparative Approved Premises for Dog Day Care Use

Address	DA No	LGA	Use	No of	Gross Floor	N	LA	No of	Hours of
		Area		Dogs	Area m2	Staff	Rate	Spaces	Operation
42-44	D/2016/1472	City of	Dog	35	294	3			7:00am - 6:30pm
Epsom		Sydney	Daycare						Monday-Friday
Road		Council	-						
Zetland									
42	D/2021/406	City of	Dog	85	796	4			7:00am - 6:30pm
McCauley		Sydney	Daycare						Monday-Friday
Street		Council	-						
Alexandria									
212-220	D/2017/546	Innerwest	Dog	40	339.3	3	1 per		7:00am - 7:00pm
Parramatta		Council	Daycare.				100m ²		
Road			Change						
Annandale			of use						
Average				60	476.43	3.33		2.66	
Area									

Using a rate of 1 space/100m² we have (3) spaces provided for the dog day care facility.

Table 2.2B

Facility	GFA Area	Parking Rate	Requirement
Dog Day Care	276	1/100m ²	3

Surveys carried out at the 'Hound Lounge' 212-220 Parramatta Road Annandale showed 5 spaces including 1 van for the centre and 4 customer spaces. Surveys showing parking and trip generation for the dog daycare 'Hound Lounge' are included in **Appendix 1** of this report.

2.3 Justification for Shared Parking

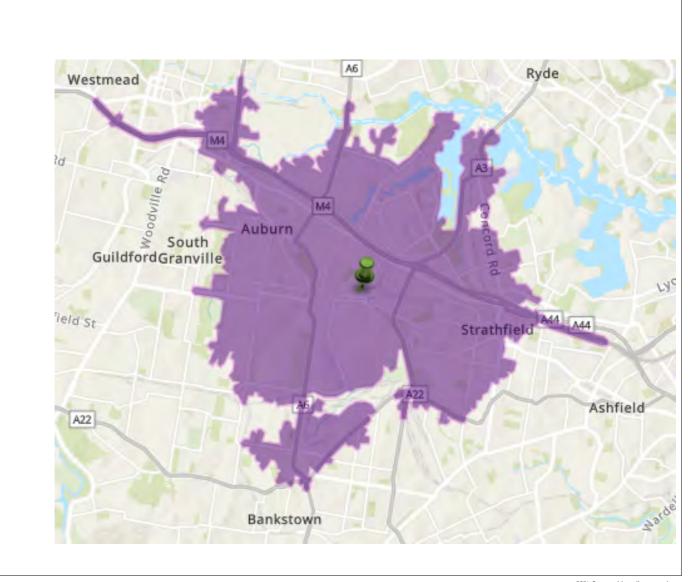
Gymnasium peak use is typically in the evenings and on Saturday mornings. This is evident from profile analysis we have undertaken. The profile analysis is based upon RMS Survey data Report No 24 Gymnasiums.

A gymnasium traffic generation profile use is shown below in Figure 0.

Figure 0 Gymnasium Traffic Generation Profile from RMS Data and Analysis No 24.

The peak parking would follow the traffic generation profile and therefore 8 shared spaces between office use and gymnasium use can be shared as their traffic generation profiles do not overlap.

3.0 TRIP DISTRIBUTION

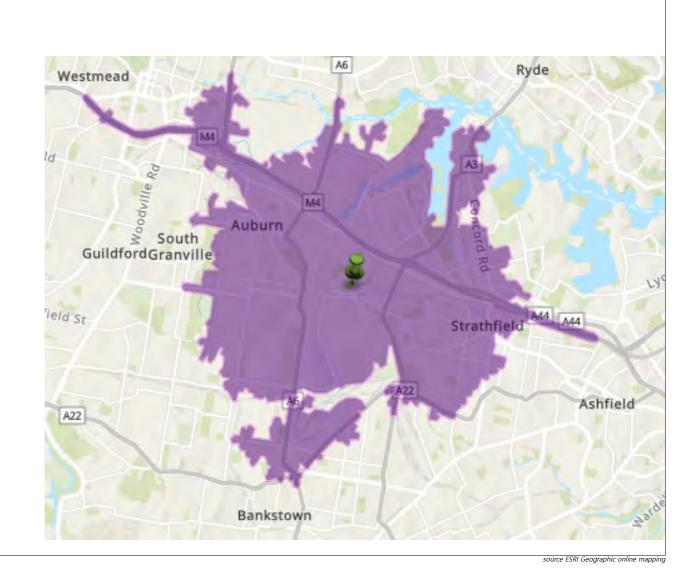

3.1 Trip Distribution for Local Customer, Café, Restaurant, Gymnasium, Childcare and Dog Daycare Use and Food and Drink

Proposed traffic distribution for local service users' local trips were analysed using travel time analysis mapping using ESRI geographical mapping portal. The 10 minute travel analysis to and from the site is shown in **Figure 1a** and **1b**. The areas located within the 10 minute travel distance for the café and childcare centre are shown in **Table 3.1A**. A 10 minute travel distance is considered an acceptable time to travel for local users from within and local surrounding localities.

An assessment of the SA2 zones is presented in **Table 3.1A**. Travel routes are detailed in **Table 3.1B** and directions by percentage shown in **Table 3.1C**

	Place of Residence	No of People Residing	Percentage of Persons within Surrounding SA2	Approach Direction
1	Strathfield	25813	26.04%	E
2	Regents Park	5138	5.18%	SW
3	Concord West	5914	5.97%	NE
4	Newington	5802	5.85%	N
5	Auburn	12501	12.61%	W/S
6	Greenacre	24323	24.54%	S
7	Lidcombe	19627	19.80%	N/S
		99118	100%	

Please note that medical centres have been analysed as 100% employees for the purposes of trip assignments and are included in Section 3.3. Clients to medical centres may be traveling outside of the peak traffic hours.


Legend

10 minute travel distance during AM peak hour

source ESRI Geographic online mapping

FIGURE 1a AM Peak Hour travel time 10 minutes to the site for local users

Legend

10 minute travel distance during PM peak hour

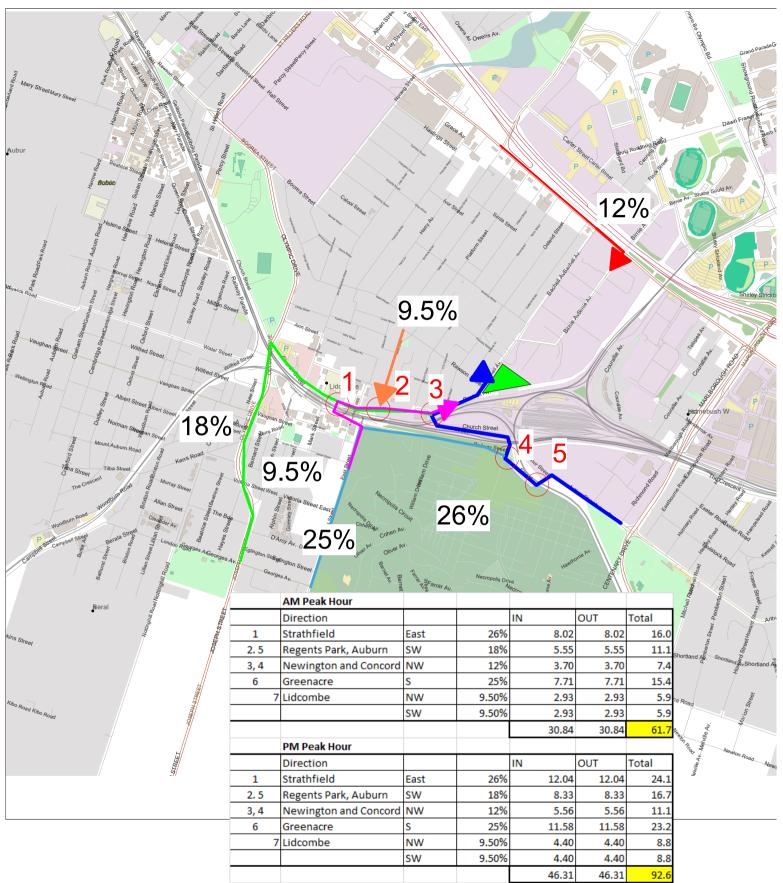
FIGURE 1b PM Peak Hour travel time 10 minutes to the site for local users

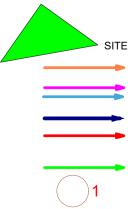
A N

(3.1 continued.)

For the purposes of analysing the traffic assignment the route choices are described below: -

Area	omers/User Travelling to and Route Choice AM	Route Choice PM		
1. Strathfield	Travel west along Barker Road. Travel north, turn right into Pemberton Road and left into Arthur Street. Turn right into Railway Street and right into Church Street and continue east to Bachell Avenue.	Travel East. Turn left and travel along Bachell Avenue to turn left into Church Street, turn left into Arthur Street, turn right into Pemberton Street and turn left into Barker Road.		
2. Regents Park and 5. Auburn	Head north along Campbell Road turn into Kerrs Road and travel	Travel West.		
	north along Olympic Drive. Turn right into Church Street and travel west to Bachell Avenue	Turn left at Bachell Avenue, travel west along Church Street to Olympic Drive, turn right into Kerrs Road. Head west along Campbell Road.		
3. Concord West	Travel south west along concord	Travel North East.		
/ Strathfield North	Road, turn right into Hiller Street and left into Pomeroy Street and right inro Underwood Road, turn left and travel east along Parramatta Road and left into Bachell Avenue.	Travel north along Bachell Avenue, turn right into A44 Parramatta Road, turn left into Underwood Road and right into Hiller Street and left into Concord Road.		
4. Newington	Travel south west along Jameison Road, left into Holkier Street travelling west and left into Hill End Road travelling south. Turn left into Parramatta Road travelling east and left into Bachell Avenue travelling south west.	Travel North. Travel north along Bachell Avenue, turn left at Parramatta Road and right into Hill End Road, left into Holkier Street and right inti Jamieson Street.		
6. Greenacre	Travel north along A3 Centenary	Travel South.		
	Drive. Turn right into Church Street and travel east towards Bachell Avenue.	Travel west, turn left at Bachell Avenue and turn left into Church Street. Turn left into Railway Street and right into Aurthur Street and Right onto A3 Centenary Drive towards Greenacre.		
7. Lidcombe	North	50% North, 50% South.		
	Travel south along Rawson or Swete Street towards and east into Bachell Avenue.	Local customers will either travel left at Bachell Avenue and then travel west along Swete Street.		
	South Local customers will travel south west along Bachell and turn left at Railway Street Bridge to continue to travel in a southwards direction.			


Table 3.1B	Customers/User	Travelling to	and from S	trathfield


(3.1 continued.)

Approach Direction	Percentage	AM Direction	PM Direction
1. Strathfield.	26.06% (26%)	N E NW	W S S SE
2. Regents Park and 5. Auburn.	5.18 + 12.61 (18%)	E N	W S
3. Newington and 4. Concord West.	5.97 + 5.85 (12%)	SW	NE
6. Greenacre.	24.54% (25%)		
7. Lidcombe	19.80% (19%)	S E E N	N W W S S

Table 3.1C Approach Direction and Percentage

For the distribution of local trips to childcare centre and café refer to Figure 1c.

TRAVEL TO AND FROM SITE FROM NORTH TRAVEL TO AND FROM SITE FROM SOUTH

TRAVEL TO AND FROM SITE FROM EAST

TRAVEL TO AND FROM SITE FROM NORTH-WEST

TRAVEL TO AND FROM SITE FROM SOUTH-WEST

FIGURE 1c

Customer/Users travelling for cafe, restaurant, gymnasium, childcare, dog daycare and food and drink

INTERSECTIONS

(3.1 continued.)

Location of nearest Childcare Centres and Cafes

The nearest childcare centres and cafes are located at the following locations:-

Table 3.1D Location of Early Learning/Childcare Centres

Business	Address	Distance (m)	
Childcare Centres			
OZ Education Childcare and Preschool	31 Swete St Lidcombe	530	
Fantastic Gems Before and After School Care	7 Mary St Lidcombe	600	
St Joseph's Childcare Centre	29 Mary St Lidcombe	650	
Scribbles & Giggles Childcare Centre	7 Mrytle St Rydalmere	2600	
Woodstock Childcare Centre	Australia Tower, Shop 5/11 Australia Ave, Sydney Olympic Park	5000	
Café		Within 1000m	
Café Culture	3/42 Birnie Avenue Lidcombe		
Café Rodem 2	10 Joseph Street Lidcombe		
Sunnys Flower Café	29A John Street Lidcombe		
Café		Further than 1000m	
Bunker 64 Café	64 Railway Street Lidcombe		
Café on Railway	66 Railway Street Lidcombe		
Café Rodem 1 Lidcombe	7B John St Lidcombe		
Interlink Café	42/159 Arthur St Homebush West		
May Story Café	144 John St Lidcombe		
Meeps Café	36C John St Lidcombe		
Pumphouse Café	3/9 Birnie St Lidcombe		
Yellow Day Coffee Roasters	18 Bridge St Lidcombe		

3.2 User/Customers Travelling to Specialised Retail Use

Customers/Users travelling to the specialised retail centre use are shown in **Table 3.2A.**

Table 3.2A SA3 Areas for Service Users – Specialised Retail (Customers) from 2016 Census Data

Place of Residence	No of People	Percentage of Persons within	SA3 Code
	Residing	Surrounding SA3	oout
Parramatta	140891	14.21%	12504
Merrylands Guildford	151262	15.25%	12503
Auburn(1)	89670	9.04%	12501
Strathfield / Burwood / Ashfield	151873	15.32%	12003
Carlingford	66570	6.71%	12502
Canada Bay	85356	8.61%	12001
Ryde / Hunters Hill	134538	13.57%	12602
Bankstown	171429	17.29%	11901
	991589	100.00%	

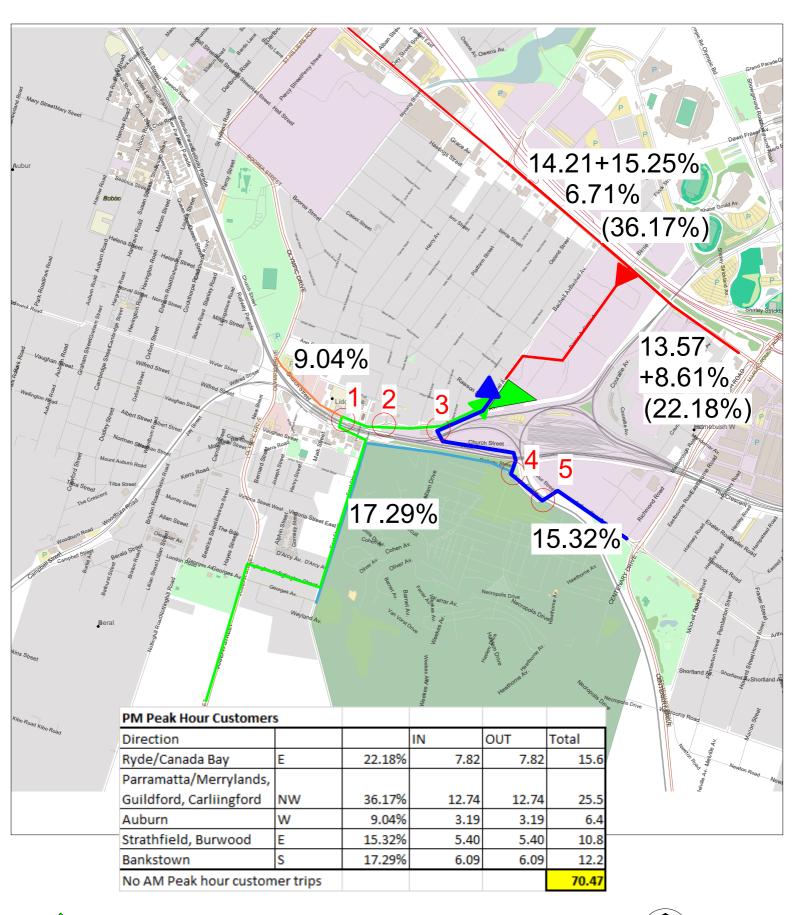
Note ¹ Auburn has 3 specialised retail service centres.

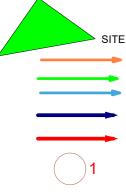
(3.2 continued.)

Table 3.2B Users/Customers Travelling to and from the Site Route Path

Place of Residence	Route Choice AM	Route Choice PM
Parramatta / Merrylands and Guildford	Travel east along M4. Turn Right at Silverwater Road to St Hilliers Street and turn left into A44 Parramatta Road. Turn right into Birne Street at the lights.	Travel north east along Bachell Avenue and continue north to M4 Western Motorway towards Parramatta.
Auburn	Travel south-east along South Parade, turn right into A6 Olympic Drive and left into Church Street. Travel north-east along Church Street to Bachell Avenue.	Travel left at Bachell Avenue, turn right into Rawson Street and into Boorea Street. Turn right into A6 Olympic Drive and left into South Parade.
Strathfield / Burwood / Ashfield	Travel NW along Arthur Street. Turn left into Church Street and turn right into Bachell Avenue and travel east to site.	Travel west along Bachell Avenue and turn left into Church Street, left into Railway Street. Travel south then right into Authur Street - travel east.
Carlingford	Travel south along Silverwater Road. Turn right into Parramatta Road and Right into Birne Avenue to Bachell Avenue.	Travel north east along Bachell Avenue. Turn left into Parramatta Road and turn right at Silverwater Road and travel north to Carlingford.
Canada Bay	Travel south along Hill End Road and right into Parramatta Road and travel east. Turn right into Birnie Avenue	Travel north east along Bachell Avenue, turn left into Parramatta Road and right into Hill End Road and turn left into M4 and travel east (M4 East).
Ryde / Hunters Hill	Travel South along A3 Homebush Bay Drive and turn right into Parramatta Road and left into Bachell Avenue.	Travel north east along Bachell Avenue, turn right into Parramatta Road and left into Birnie Avenue, right into Edwin Flack Avenue and left into Sarah Durack Avenue and left into A3 Homebush Bay Drive.
Bankstown	Travel north along Jospeh Street A6,	Travel south west along Bachell Avenue into Church Street, turn left into Railway Street and right into East Street, turn right into Eglington Street and left into Joseph Street A6.

(3.2 continued.)


Table 3.2C Approach/Depart Direction and Percentage				
Approach Direction AM	Approach Direction PM	Direction AM	Direction PM	
Parramatta, Merrylands Guildford	Parramatta, Merrylands Guildford Pyrio (Capada Pay	6.71% Carlingford S	6.71%	
Hilliers Street and turn left into A44 Parramatta Road. Turn right into Birne Street at the	Ryde/Canada Bay Travel north east along Bachell Avenue and continue north to M4 Western Motorway towards Parramatta.	W 14.21% Parramatta 15.25% Merrylands + Guildford S SW	14.21% * 15.25% 8.61% NE 58.35%	
Auburn Travel south-east along South Parade, turn right into A6 Olympic Drive and left into Church Street. Travel north- east along Church Street to Bachell Avenue	Auburn Travel left at Bachell Avenue, turn right into Rawson Street and into Boorea Street. Turn right into A6 Olympic Drive and left into South Parade.	NE 9.04%	NW SW	
Strathfield Burwood Travel NW along Arthur Street. Turn left into Church Street and turn right into Bachell Avenue and travel east to site.	Strathfield Burwood Travel south west along Bachell Avenue, turn left into Church Street and left into Railway Street, right into Arthur Street.	SW 15.32% E	SW 15.32%	
Bankstown Travel South along A3 Homebush Bay Drive and turn right into Parramatta Road and left into Bachell Avenue	Bankstown Travel to Bankstown south west along Bachell to Church Street, left into Railway Street.	K 17.29% N ₩ N	$\downarrow \longrightarrow \downarrow \downarrow \downarrow$	


nnroach/Donart Direction and Percentage able 2 2C ٨

For the distribution of local trips to specialised retail refer to Figure 2a.

Address	Name
219 Parramatta Road Auburn	Auburn Home Centre
265 Parramatta Road Auburn	Prime West Megamall
300 Parramatta Road Auburn	Officeworks/Bulkygoods Centre

Refer to Figure 2b for locations shown in Nearmap.

TRAVEL TO AND FROM SITE FROM WEST TRAVEL TO AND FROM SITE FROM SOUTH-WEST TRAVEL TO AND FROM SITE FROM SOUTH

TRAVEL TO AND FROM SITE FROM EAST TRAVEL TO AND FROM SITE FROM NORTH WEST/NORTH-EAST FIGURE 2a Customer/Users travelling specialised retail

INTERSECTIONS

3.3 Employees/Workers Travelling to and from the Site

The Journey to Work data was reviewed based upon Australian Bureau of Statistics (ABS) 2016 Journey to Work data. Although 2021 is available it has inconsistencies due to COVID restrictions and work from home. The SA2 Areas were used to determine travel to and from the site for employees.

Origin SA3	Origin SA3 ID	No. of Vehicle Drivers	%
Merrylands - Guildford	12503	142.2	8.30%
Fairfield	12702	128.6	7.50%
Bankstown	11901	122.2	7.13%
Auburn	12501	113.6	6.63%
Parramatta	12504	93.8	5.47%
Blacktown	11601	93.2	5.44%
Mount Druitt	11603	87.4	5.10%
Baulkham Hills	11501	78	4.55%
Strathfield - Burwood - Ashfield	12003	70.4	4.11%
Campbelltown (NSW)	12302	61.6	3.59%
Canterbury	11902	60.2	3.51%
Penrith	12403	59	3.44%
Liverpool	12703	58.2	3.40%
Bringelly - Green Valley	12701	56	3.27%
Blacktown - North	11602	55.4	3.23%
Kogarah - Rockdale	11904	50.2	2.93%
St Marys	12405	44	2.57%
Sutherland - Menai - Heathcote	12802	43.8	2.56%
Ryde - Hunters Hill	12602	41.8	2.44%
Canada Bay	12001	36.4	2.12%
Cronulla - Miranda - Caringbah	12801	35.4	2.07%
Hurstville	11903	35.2	2.05%
Carlingford	12502	34	1.98%
Camden	12301	26	1.52%
Ku-ring-gai	12103	25.2	1.47%
Sydney Inner City	11703	21.4	1.25%
Leichhardt	12002	21.2	1.24%
Warringah	12203	19.2	1.12%
Total		1713.6	100.00%

 Table 3.3A
 Journey to Work to Travel Zones: 1337 and 1338 for Employees

Note: Employees travelling from Origin SA3 to Travel Zones 1337 and 1338 with vehicle driver trips less than 1% of total trips have been omitted.

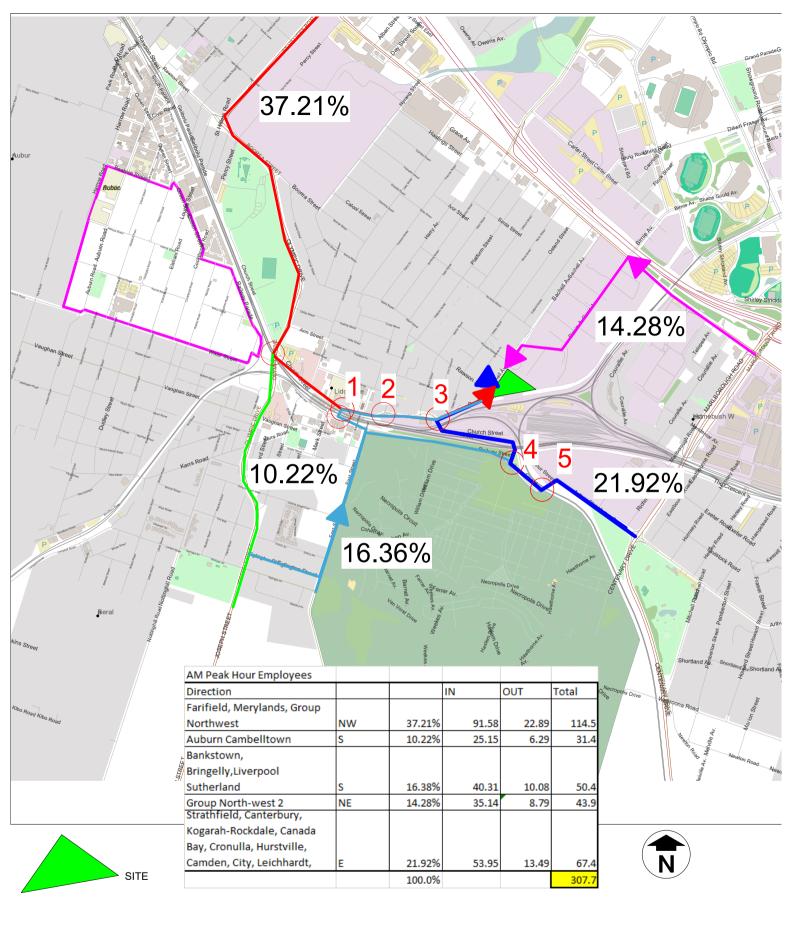
(3.3 continued.)

Table 3.3B Route Choice for Employees to the Site

Travel	Route Choice AM	Percentage of Trips
Fairfield, Merrylands Group North-West (1)	Travel along M4 to A6 Silverwater Road and travel along Hilliers Street to urn left at Olympic Drive turn right into Church Street and travel east to Bachell Avenue.	7.50%, 8.30% +21.41% =37.21%
Auburn/Campbellown	Travel north along Olympic drive and turn right into Church Street.	6.63%+3.59% =-10.22%
Bankstown, Liverpool Bringelly, Sutherland	Turn right at Railway Street Bridge and travel east along Church Street to Bachell Avenue.	7.13%+3.40%+3.27%+2.56 % = 16.36%
Group North-West (2)	Travel east along Parramatta Road and turn right at Bachell Ave.	14.28%
Strathfield, Canterbury, Kogarah-Rockdale, Canada Bay, Cronulla, Hurstville, Camden, City, Leichhardt, Warringah	Travel along Homebush Bay Drive A3 to turn right at Arthur Street.	4.11%+3.51%, 2.93%+2.12%+2.07%+2.05 %+ 1.52%+1.24%+1.12% =21.92%

Notes:

Group North-West (1) and (2)

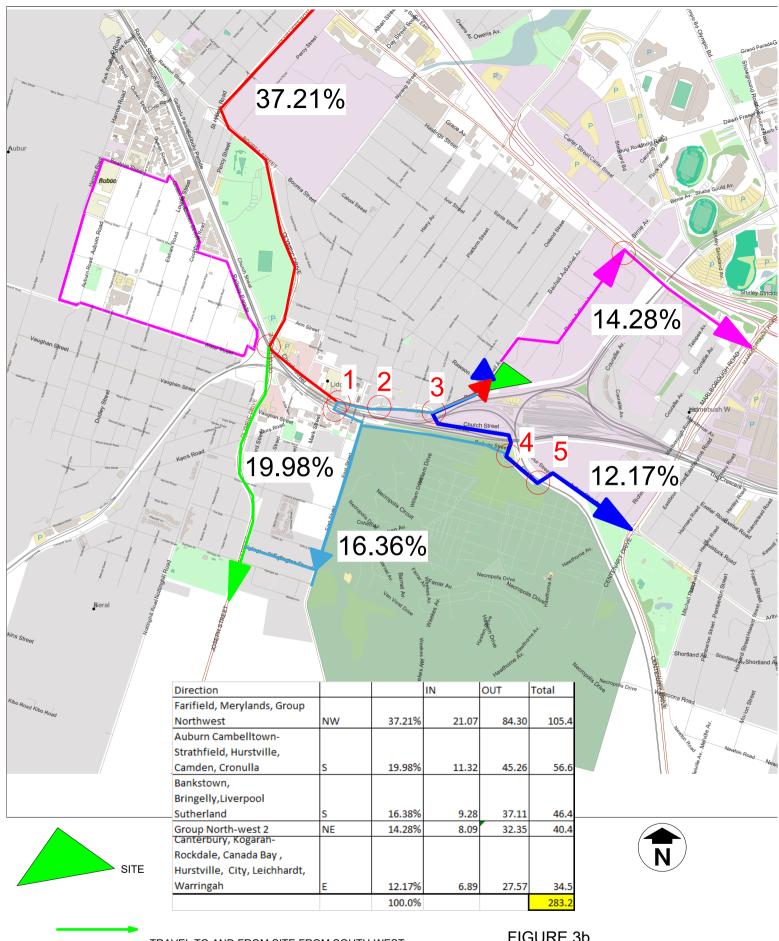

Parramatta	5.47%
Blacktown	5.44%
Mount Druitt	5.10%
Baulkham Hills	4.55%
Penrith	3.44%
Blacktown	3.23%
St Marys	2.57%
Ryde	2.44%
Carlingford	1.98%
Ku-ring-gai	1.47%
	35.69%

Via Parramatta Road=14.28%(2) Via Church Street/ Olympic Drive = 21.41%(1)

(3.3 continued.)

Travel	Route Choice PM	Percentage of Trips
Fairfield, Merrylands Group North-West (1)	Travel west along Bachell Avenue to Church Street. Turn right at Church Street into Olympic Drive to A6 to M4.	7.50%, 8.30% +21.41% =37.21%
Auburn/Campbelltown Strathfield, Hurstville and Camden, Cronulla	Travel west along Bachell Avenue into Church Street. Turn left at Olympic Drive to travel south.	6.63%+3.59%+4.11%+2.06 %+1.52% +2.07 = 19.98%
Bankstown, Liverpool Bringelly, Sutherland	Travel west along Bachell Avenue and turn left at Railway St Bridge. Travel left into Railway Street and turn right into East Street and travel south.	7.13%+3.40%+3.27%+2.56 % = 16.36%
Group North-West (2)	Travel north-east along Bachell Avenue and turn left into Parramatta Road A44.	14.28%
Canterbury, Kogarah- Rockdale, Canada Bay, Canada Bay, City, Leichhardt, Warringah	Travel west along Bachell Avenue and turn right at Church Street, turn right at Railway Street and right at Arthur Street.	+3.51%+2.93%+2.12%+1.2 5%+1.24%+1.12% =12.17%

For the distribution of employee trips to the network refer to Figure 3a and 3b.


TRAVEL TO AND FROM SITE FROM EAST TRAVEL TO AND FROM SITE FROM NORTH WEST/NORTH-EAST TRAVEL TO AND FROM SITE FROM

TRAVEL TO AND FROM SITE FROM SOUTH-WEST

FIGURE 3a Trip Distribution Employees Travel to the Site

NORTH-EAST

1

TRAVEL TO AND FROM SITE FROM SOUTH-WEST

TRAVEL TO AND FROM SITE FROM EAST TRAVEL TO AND FROM SITE FROM NORTH WEST/NORTH-EAST TRAVEL TO AND FROM SITE FROM NORTH-EAST

INTERSECTION LOCATION

FIGURE 3b Trip Distribution Employees Travel from the Site

1

4.0 TRAFFIC GENERATION RATES

4.1 **Proposed Traffic Generation Rates**

Trip generation rates are described below for the following uses:-

Specialised Retail

The rate of 2.7 trips/100m² GFA not GLFA. 20% assignment to AM is acceptable.

In the document (*RMS Guide to Traffic Generating Developments*) a reduction of 20% for linked trips is acceptable practice for developments where there are multiple attractors such as specialised retail use, café, dog daycare, restaurant and food and drink premises.

Office Use

The rates for Norwest Business Park in TDT20B/04a of 2.75 trips/100m² GFA for AM and 1.17 trips/100m² GFA for the PM have been adopted based on agreement with TfNSW on DA No. 2022/0463. Refer to main paper for updates.

A green travel plan has been provided for the centre to support the reduction for linked trips and encourage staff employees to use the extensive surrounding off road bicycle paths. It may be possible to further reduce car dependency based on the alternative active travel mode.

A 5% reduction has been provided due to implementation of a green travel plan and the close proximity of an off road cycle path is located north of the development site.

Food and Drink Premises

The rate from the *RMS Guide to Traffic Generating Developments* has been adopted for food and drink premises within commercial retail centres where:-

Vehicle(P) = vehicles trips per $1000m^2 = 46A(SS)$ Whereby SS = speciality shops and take away food shops which are not the primary attractors to the centre.

The traffic generation has been calculated as $46 \times 1542/1000 = 70.9.100\%$ trips for the PM. In the AM peak hour 20% of trips are assigned to staff.

Restaurant

The rate for the restaurant adopted is 5 trips per $100m^2$ GFA in the PM peak hour. An allowance of $1/100m^2$ GFA is adopted for the AM peak hour for staff trips.

Café

The café is open in the morning AM peak hour so 5/100m² GFA is provided and 1/100m² GFA in the PM peak hour. This rate has been adopted at similar developments.

(4.1 continued.)

Light Industry/ High Technology

The rate used has adopted the business and industrial parks rates from TDT2013/04a of AM peak hour Rate $0.52/100m^2$ GFA and PM peak hour rate of $0.56/100m^2$ GFA.

High technology use uses the same rates as Light Industrial.

Self-Storage

The rate for warehouse and distribution is adopted from the *RMS Guide to Traffic Generating Developments Section 3.10 Warehouse* of 0.5/100m² GFA.

Healthcare Services

The rates for medical centres and medical consulting rooms were reviewed from the following sources: *Roads and Maritime Services Trip Generation Rates for Medical Centres Analysis Report* by TEF Consulting and *RMS Land Use Data* and *Analysis No 20 Extended Hours Medical Centres*. Whilst the facilities in this development may include some medical consulting use there will be other facilities such as medical offices and support facilities. Health services can include a broad range of services including allied health services. Allied health professionals provide a broad range of diagnostic, technical, therapeutic and direct health services to improve the health and wellbeing of the consumers they support. It may include aged care support, social health support services, disability consulting services, herbal or therapeutic remedies.

The following rates have been applied:-

The AM peak hour rate rate of 1.6/100m² GFA has been adopted. A PM peak hour rate of 3.1/100m² GFA has been adopted.

Dog Day Care

It is assumed for a facility with 276m² GFA there will be 2 staff and 40 animals. The traffic generation for this facility has been based on surveys undertaken at a similar sized facility, The Hound Lounge, located at 212-220 Parramatta Road Annandale with a GFA of 339.3m² GFA. The traffic generation rate pro-rata to GFA is 7 trips in and 7 trips out in the AM peak hour and 6.3 trips in and 6.3 trips out in the PM peak hour. Refer to **Appendix 1** in this report for survey results.

The revised traffic generation table is shown in **Table 4.1A**.

(4.1 continued.)

	Peak	Gross Floor Area (m²)		Т	Reductions		
Land Use Groups	Hour		Generation Rate	IN	OUT	TOTAL	Linked Trips
Food and Drink Premises ***	AM	1542	46A/1000 X 20%	7.1	7.1	14.2	11.3
	PM	1042	46A/1000 X 100%	35.5	35.5	70.9	<u>56.7</u>
Specialised Retail ***	AM	3625	2.7/100m ² x 20%	9.8	9.8	19.6	15.7
	PM		2.7/100m ² x 100%	48.9	48.9	97.9	78.3
Restaurant ***	AM	1154	1 per 100 m ²	9.2	2.3	11.5	9.2
The staturant	PM	1104	5 per 100 m ²	28.9	28.9	57.7	46.2
Note 3 Café ***	AM	159	5 per 100 m ²	4.0	4.0	8.0	6.4
	PM	159	1 per 100 m ²	0.0	1.6	1.6	1.3
Reduction Linked trips 20%	AM			6.0	4.6	10.7	Green Travel
Reduction Linked trips 20%	PM			22.7	23.0	45.6	Green naver
Light Industries****	AM	3036	0.52 per 100 m ²	12.6	3.2	15.8	15.0
Light industries	PM	3030	0.56 per 100 m ²	3.4	13.6	17.0	16.2
	AM	5700	0.52 per 100 m ²	24.1	6.0	30.1	28.6
High Technology Industry****	PM	5790	0.56 per 100 m ²	6.5	25.9	32.4	30.8
Centre Based Child Care	AM	711	0.8 per child	21.2	21.2	42.4	40.3
Note 1 Facility****	PM	(106)	0.7 per child	18.6	18.6	37.1	35.2
Self Storage****	AM		0.5/100*50% IN &50% OUT	2.4	2.4	4.8	4.56
Facilities****	PM	954	0.5/100*50% IN &50% OUT	2.4	2.4	4.8	4.56
	AM		0.18 per 100 m ²	0.8	0.8	1.6	1.5
Note 2 Gymnasium ****	PM	881	0.9 per 100 m ²	3.96	4.0	7.9	7.5
Office & Business Premises	AM	6972	2.75 per 100 m ²	153.4	38.3	191.7	182.1
***	PM		1.17 per 100 m ²	16.3	65.3	81.6	77.5
	AM	2695	1.6 per 100 m ²	21.6	21.6	43.1	41.0
Note 4 Health Care Services ****	PM		3.1 per 100 m ²	41.8	41.8	83.55	79.4
Reduction for Green Travel 5%	AM			11.8	4.7	16.5	
Reduction for Green Travel 5%	PM			4.6	8.6	13.2	
	AM	276	see notes	7.0	7.0	14.0	
Note 5 Dog Daycare	PM			6.3	6.3	12.6	
Note 6 Care Taker	AM/PM	35				0.0	
		27830	TOTAL AM	266.2	116.7	382.8	
			TOTAL PM	206.14	286.33	492.47	
			AM Reduction for linked trips				
			and green travel	248.4	107.4	369.7	
			PM Reduction for linked trips	470.0			
			and green travel	178.8	254.8	446.2	

NOTES: -

Note 1: Traffic generation for childcare centres is calculated in accordance with the *RMS Guide to Traffic Generating Developments* – *Table 3.6 Traffic Generation Rates for Childcare Centres.* Long day is 0.8 trips per child over 2 hours 7 – 9am and 0.7 trips per child over 2 hours 4 – 6pm. Rates are for a 2 hour period and 106 children.

- Note 2: AM rate based upon average 7 sub-regional centres.
- Note 3: Most cafes are very busy in the AM peak hour period. Same rate as for restaurants.

Note 4: Based upon RTA data.

- Note 5: 40 animals. Surveys carried out at a similar centre determined trip generation rate.
- Factor 0.7 x 20 = 14 AM trips and 0.7 x 18 = 12.6 trips PM
- Note 6: Caretaker on site. No traffic generation during AM/PM Peak Hours.
- Note *** Reduction of 20% for linked multipurpose trips.

Note **** Reduction of 5% for green travel.

(4.1 continued.)

Table 4.1B Trip Generation for Employees and CustomersThe calculation of employee trips to customer tripsAM Peak Hour Use

AM Peak Hour Use			1	1	r	-	1	1
Use	Employee	Customer	In	Out	Assigned Trips Employees	In	Out	Assigned Trips Customers
Food and Drink Premises	10%	90%	0.565	0.565	1.13	5.085	5.085	10.17
Specialised Retail	100%		15.7	7.85	15.7			
Restaurant	100%		4.6	4.6	9.2			
Café	100%		3.2	3.2	6.4			
Light Industries	100%		12	3	15			
High Technology	100%		22.88	5.72	28.6			
Childcare Centre	10%	90%	2	2	4	18	18	36
Self-storage	100%		2.25	2.25	4.5			
Gymnasium		100%				0.75	0.75	1.5
Office	100%	-	145.68	36.42	182.1			
Healthcare Services	100%		32.8	8.2	41			
Dog Daycare		100%				7	7	14
Totals					307.63			61.67
PM Peak Hour Use								
Use	Employee	Customer	In	Out	Assigned Trips Employees	In	Out	Assigned Trips Customers
Food and Drink Premises	100%		28.35	28.35	56.7			
Specialised Retail	10%	90%	3.915	3.915	7.83	35.235	35.235	70.47
Restaurant	10%	90%	2.31	2.31	4.62	20.79	20.79	41.58
Café	100%		0.65	0.65	1.3			
Light Industries	100%		8.1	8.1	16.2			
High Technology	100%		15.4	15.4	30.8			
Childcare Centre	10%	90%	1.76	1.76	3.52	15.84	15.84	31.68
Self-storage	100%		2.28	2.28	4.56			
Gymnasium	10%	90%	0.375	0.375	0.75	3.375	3.375	6.75
Office	100%	-	38.75	38.75	77.5			
Heathcare Services		100%	39.7	39.7	79.4			
Dog Daycare		100%	6.3	6.3	12.6			
Totals	1				295.78			150.48

5.0 SUMMARY

This report has been prepared in accordance with the *CDCP 2021 Part G3 Parking* and where there is no specific rate, justification is provided through comparable survey data.

Table 2 of *CDCP Part G* does not provide a rate for specialised retail premises or bulky goods retail, and therefore the following note applies:

"Where a parking rate has not been specified in the table, the Guide to Traffic Generating Developments shall be used to calculate the parking requirements for the proposed development. Alternatively, a parking study may be used to determine the parking, subject to prior approval by Council."

Trip distribution for local customers and those visiting specialised retail uses are described in detail. The distribution of employee trips is also described in detail and the assignment to the road network. This report is to be read in conjunction with *Report No* 34_22 *Traffic and Parking Impact Assessment for Development Application for Proposed Business Development at 2 Bachell Avenue Lidcombe*.

APPENDIX I

Curtis Traffic Surveys

Job: 230901Im Client: Lyle Marshall & Partners Day, date 18/09/23 Average length of stay Location: Hound Lounge Annandale Weather: Fine Surveyor MC

00:02

Mode Split

Mode Split

Arrival Departu Vehicle time Identifier re Time Comment Length of stay Staff Van No of Car Drivers Walked 07:01 07:04 00:03 07:09 >9:00 Hound Lounge van I 07:09 07:11 00:02 T 07:10 07:12 00:02 T 07:20 07:22 00:02 I 07:22 07:24 00:02 T 07:31 07:31 walked 07:39 07:38 00:01 T 07:49 07:45 00:04 I 07:46 07:48 00:02 I 07:48 07:48 walked 07:49 07:51 00:02 L T 07:53 07:57 00:04 07:55 07:58 00:03 T 07:55 07:57 00:02 I 07:59 08:02 00:03 I 07:59 08:01 00:02 T 08:06 08:09 walked 08:13 08:10 00:03 T 08:11 08:12 walked 08:18 00:03 08:15 T 08:20 08:24 00:04 I 08:23 08:26 00:03 T 08:35 00:06 08:29 I 08:30 08:31 walked 08:39 08:40 00:01 I 08:41 08:43 00:02 Τ Average Length of Stay 00:02 20 5

Curtis	Traffic	Surveys
--------	---------	---------

Job: 2309011m

Client: Lyle Marshall & Partners

Day, date 18/09/23

Location: Hound Lounge Annandale

Average length of stay 00:05

Weather: Fine

Surveyor MC

Mode Split

					r lode spile	
Arrival	Vehicle	Departu				
time	Identifier	re Time	Comment	Length of stay	No of Car Drive	Walked
<16:00	Hound Lounge van	16:58	Hound Lounge van			
15:44		15:51		00:07	I	
15:52		15:56		00:04	I	
16:03		16:07		00:04	I	
16:09		16:12		00:03	I	
16:21		16:28		00:07	I	
16:21		16:25		00:04	I	
16:29		16:32		00:03	I	
16:32		16:40		00:08	I	
16:37		16:41		00:04	I	
16:39		16:45		00:06	I	
17:04		17:11		00:07	I	
17:07		17:14		00:07	I	
17:17	Hound Lounge van	<18:00	Hound Lounge van			
17:21		17:24		00:03	I	
17:21		17:29		00:08	I	
17:25		17:31		00:06	I	
17:42		17:45		00:03		
17:44		17:49		00:05		
17:46		17:50		00:04		
17:49		17:53		00:04	I	
17:52		17:55	walked	1		
			•	00:05	18	

APPENDIX 2

Planning circular

PLANNING SYSTEM

Amendments to retail land use definitions - garden centre, artisan food and drink industry, local distribution premises, neighbourhood supermarkets and specialised retail premises				
Circular	PS 18-008			
Issued	31 Aug 2018 (replaces version issued 27 July 2018)			
Related	PS 13-001			

Amendments to Retail Land Use Definitions

This Circular is to advise local councils and other relevant planning authorities, community, industry and practitioners of a number of retail land use definitions (new or revised) introduced into the Standard Instrument (Local Environmental Plans) Order 2006 and certain other environmental planning instruments.

Updating retail land uses

The NSW retail sector is dynamic and highly competitive. With constantly evolving consumer preferences and technology continuing to transform traditional retail, the NSW planning system must be able to adapt.

The NSW Department of Planning and Environment exhibited five strategic amendments to retail land uses from 3 April 2018 to 18 May 2018. The proposed definition amendments aimed to provide consistency, efficiency and clarity to the NSW planning system for retail and include:

- A new definition for 'artisan food and drink industry';
- A revised definition for 'garden centre'
- A new definition for 'local distribution premises'
- A new definition for 'neighbourhood supermarkets'; and
- Replacement of the definition for 'bulky goods premises' with 'specialised retail premises'.

This Planning Circular provides an overview of the purpose of the amendments, and the impact of the change for local government, stakeholders and the community.

Revised 'garden centre' definition

Overview of the amendment

A revised definition of 'garden centre' has been included in the *Standard Instrument (Local Environmental Plans) Order 2006* (SI LEP Order) to clarify the type of uses that may be included in a garden centre and to remove the requirement for the uses to be ancillary to the retail sale of plants and landscaping and gardening supplies and equipment.

The amended definition of 'garden centre' replaces all definitions of 'garden centre' in standard instrument local environmental plans and certain other environmental planning instruments.

Purpose of the amendment

The revised definition of 'garden centre' seeks to balance the views of stakeholders and deliver a contemporary definition which responds to the changing nature of the garden centre format.

The amendment to the SI LEP Order restructures the definition of 'garden centre' to clarify the principal and complementary uses that may be carried out in a garden centre. It removes the term 'ancillary', lists the uses that may be associated with a garden centre and restructures the definition to remove ambiguity.

Garden centres have evolved into places where customers can shop for their gardening and outdoor improvement needs. The amendment allows for a mix of complementary uses to better serve customer needs.

Revised 'garden centre' definition

The definition of 'garden centre' will now read:

garden centre means a building or place the principal purpose of which is the retail sale of plants and landscaping and gardening supplies and equipment. It may include a restaurant or cafe and the sale of any of the following: There is also a growing requirement for a larger floor plate because of the quantity and range of products on offer, rather than the size of an individual product.

The new definition of 'specialised retail premises' differs from the previous definition of 'bulky goods premises' in that:

- It is no longer a requirement that the goods be of such a size or weight as to require both a large area for handling, display and storage and direct vehicular access to loading facilities for members of the public. Only one of these requirements needs to be met.
- Retailers that stock a large quantity or volume of products are characterised as specialised retail premises even if those products are not large or heavy, but the quantity or volume of goods requires a large area for handling, display and storage or direct vehicular access to loading facilities for members of the public.

New 'specialised retail premises' definition

The new definition of 'specialised retail premises' is:

specialised retail premises means a building or place the principal purpose of which is the sale, hire or display of goods that are of a size, weight or quantity, that requires:

(a) a large area for handling, display or storage, or

(b) direct vehicular access to the site of the building or place by members of the public for the purpose of loading or unloading such goods into or from their vehicles after purchase or hire,

but does not include a building or place used for the sale of foodstuffs or clothing unless their sale is ancillary to those goods being sold, hired or displayed.

Note. Examples of goods that may be sold at specialised retail premises include automotive parts and accessories, household appliances and fittings, furniture, homewares, office equipment, outdoor and recreation equipment, pet supplies and party supplies.

Specialised retail premises are a type of retail premises—see the definition of that term in this Dictionary.

Types of goods that fall within the definition of 'specialised retail premises'

The definition includes a list of examples of goods that may be sold, displayed or hired at specialised retail premises. The term 'goods' includes accessories, equipment and supplies.

This list of examples is not exhaustive or exclusive – any goods that are of such a size, weight or quantity so as to require a large area for handling, display and storage or direct vehicular access to loading facilities for members of the public will meet the definition. Types of goods that fall within the definition include:

- animal supplies including equestrian and pet goods;
- automotive parts and accessories;
- camping, outdoor and recreation goods;
- electric light fittings;
- floor, wall and window coverings;
- furniture, bedding, furnishings, fabric and manchester and homewares;
- household appliances and fittings;
- household electrical goods and home entertainment goods;
- party supplies;
- swimming pools and spas;
- office equipment and supplies;
- baby and children's goods, children's play equipment and accessories;
- barbeques, fireplaces and gas appliances;
- sporting, cycling, leisure, fitness goods and accessories;

Ancillary goods

A comprehensive and full range of goods, of all shapes and sizes, can be sold, displayed and hired in a 'specialised retail premises'.

A 'specialised retail premises' can include the sale and display of foodstuffs and clothing, however they must be ancillary and/or incidental and/or sold in conjunction to the goods which meet one of the two nominated tests in the definition.

Land use permissibility

'Specialised retail premises' will replace 'bulky goods premises' wherever the term occurs in a Standard Instrument LEP. This means 'specialised retail premises' will be permissible wherever 'bulky good premises' were permissible.

Like 'bulky goods premises', 'specialised retail premises' will be a subset of 'retail premises' and 'commercial premises' and will be permissible wherever these uses are permissible (as long as 'specialised retail premises' are not specifically prohibited). 'Specialised retail premises' will also remain a mandated permissible use in the B5 Business Development zone.

Need for the change

The Department has received submissions from industry and councils that the current definition of 'bulky goods premises' does not reflect the current and future direction of large format retailing. The new definition clarifies that 'specialised retail premises' includes, the display, sale or hire of goods that are of a size or weight, or a quantity of products to require a large floor area or access for customer loading facilities. **APPENDIX J**

RAAD PROPERTY ACQUISITION NO 10 PTY LTD

BUSINESS DEVELOPMENT

AT 2 BACHELL AVENUE LIDCOMBE

REPORT ON PARKING UTILISATION AND CAPACITY ANALYSIS OF LOADING FACILITIES FOR SPECIALISED RETAIL

Prepared by:

Lyle Marshall & Partners Pty Ltd Consulting Engineers, Architects, Transportation and Environmental Planners

Suite 31, 401 Pacific Highway ARTARMON NSW 2064

Phone: (02) 9436-0086 Email: lyle@lylemarshall.com.au

Job No.: 1194-22 Report No.: 18/23

OCTOBER 2023

CONTENTS

1.0	INTRODUCTION				
		Background Scope of Report			
2.0		RKING AND UTILIZATION RATES FOR CAPACITY OF LOADING CILITY — SPECIALISED RETAIL	5		
3.0	CO	MPARISON ANALYSIS – SPECIALISED RETAIL	6		
4.0	CO	NCLUSION	6		

LIST OF FIGURES

Figure 1	Locality Map 1 Frederick Street Artarmon
Figure 2	Shop Directory at 1 Frederick Street Artarmon
Figure 3	Plan showing Loading Dock Layout at 1 Frederick Street Artarmon

APPENDICES

APPENDIX A

• NSW Government Planning Circular PS 18-008 dated 31 August 2018 Amendments to Retail Land Use Definitions

APPENDIX B

Surveys carried out of Loading Dock at 1 Frederick Street Artarmon

- Tuesday 14/2/2023 between 9:00am and 4:45pm
- Wednesday 15/2/2923 between 9:00am and 4:30pm
- Thursday 16/2/2023 between 9:00am and 4:30p

1.0 INTRODUCTION

1.1 Background

The aim of the study is to undertake a capacity and efficiency analysis reviewing the operating development loading facilities to ascertain loading service rates.

The objective of the report is to look at facilities which have mixed use specialised retail facilities. Undertake a survey at a comparable centre for specialised retail.

1.2 Scope of Report

The definition of specialised retail is from the *NSW Planning Circular PS* 18-008 Amendments to Retail Land Use Definitions: -

New 'specialised retail premises' definition

The new definition of 'specialised retail premises' is: **specialised retail premises** means a building or place the principal purpose of which is the sale, hire or display of goods that are of a size, weight or quantity, that requires:

(a) a large area for handling, display or storage, or

(b) direct vehicular access to the site of the building or place by members of the public for the purpose of loading or unloading such goods into or from their vehicles after purchase or hire, but does not include a building or place used for the sale of foodstuffs or clothing unless their sale is ancillary to those goods being sold, hired or displayed.

Note. Examples of goods that may be sold at specialised retail premises include automotive parts and accessories, household appliances and fittings, furniture, homewares, office equipment, outdoor and recreation equipment, pet supplies and party supplies.

A copy of the Planning Circular is contained in **Appendix A** of this report.

A study of the loading operations at a similar facility will determine loading requirements to gross floor area.

This report has been prepared to :-

Part A1

Undertake surveys at a similar specialised retail facility to ascertain peak loading demand and utilisation rates.

- 1) A survey over 3 week days between 9:00am 5:00pm to ascertain peak demand in the loading dock and classification and length of stay.
- 2) Analyse survey data and determine peak period demand.
- 3) Analyse vehicle type and demand for type of loading spaces.
- 4) Calculate demand for loading facility at Hampstead Road Auburn based upon survey data.

2.0 PARKING AND UTILIZATION RATES FOR CAPACITY OF LOADING FACILITY --- SPECIALISED RETAIL

We have undertaken a loading classification study at a similar facility located at 1 Frederick Street Artarmon, known as Home HQ. The site is also known as Lot 12, DP 230974 as shown in **Figure 1 Locality Plan**. The centre operations from 9:00am to 5:30pm Monday to Sunday. The centre has a glasshouse café and variety of furniture and retail warehouse stores as shown in **Figure 2**.

Photograph P1 shows the entrance driveway for trucks when viewed from Frederick Street. **Photographs P2** to **P6** show the loading bay areas.

The centre has a GFA of 24191m² and has 432 car parking spaces on site as per the approved DA 2014/578.

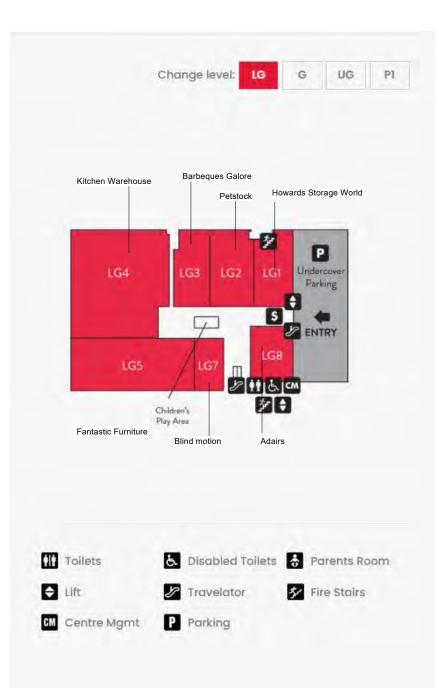
The loading dock has access from Frederick Street. A plan of the loading dock is shown in **Figure 3**.

The surveys at Home HQ were carried out over 3 consecutive days: Tuesday 14/2/23, Wednesday 15/2/23 and Thursday 16/2/23.

The full results of the surveys are located in **Appendix B** of this report.

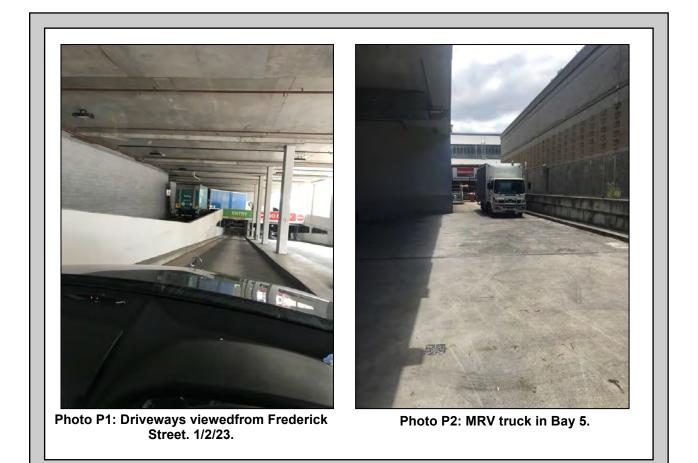
Dav	Time	Vehicle Type/No				
Day	Time	MRV's	Vans/Utility			
Tuesday 14/2/23	10:30 - 11:00am	4	4			
*Wednesday 15/2/23	9:30 - 10:00am	6	3			
Thursday 16/2/23	10:30 - 11:00am	3	4			
Ave	rage (rounded up)	4	4			

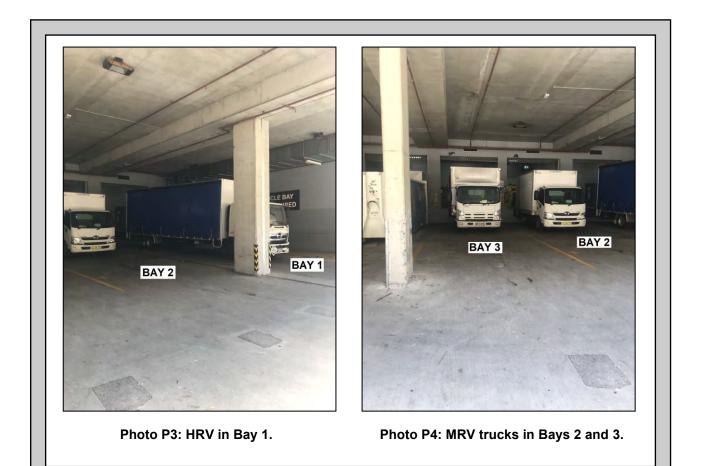
* Please note that Bay 4 is not operational due to large skip bin within loading bay on the days of the survey. A truck blocking the entrance driveway from 9:00am to 11:00am meant that trucks could not enter any of the bays.



SOURCE NEARMAP 2023

SITE 1


Lot 12 DP 230974 1 FREDERICK STREET ARTARMON


> FIGURE 1 LOCALITY MAP

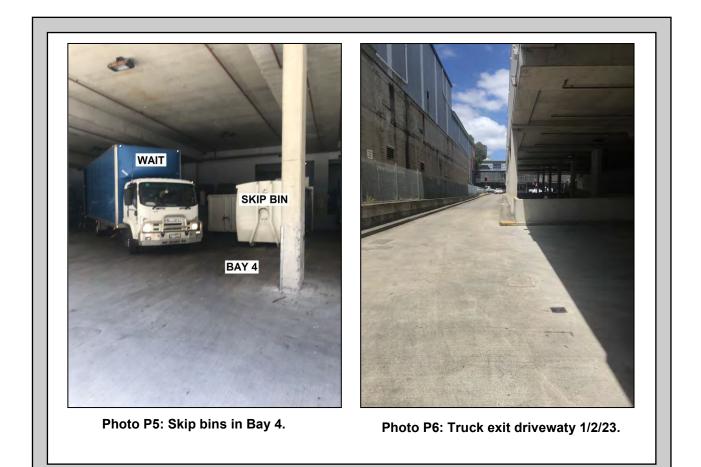


FIGURE 2 SHOP DIRECTORY HOME HQ **1 FREDERICK STREET ARTARMON**

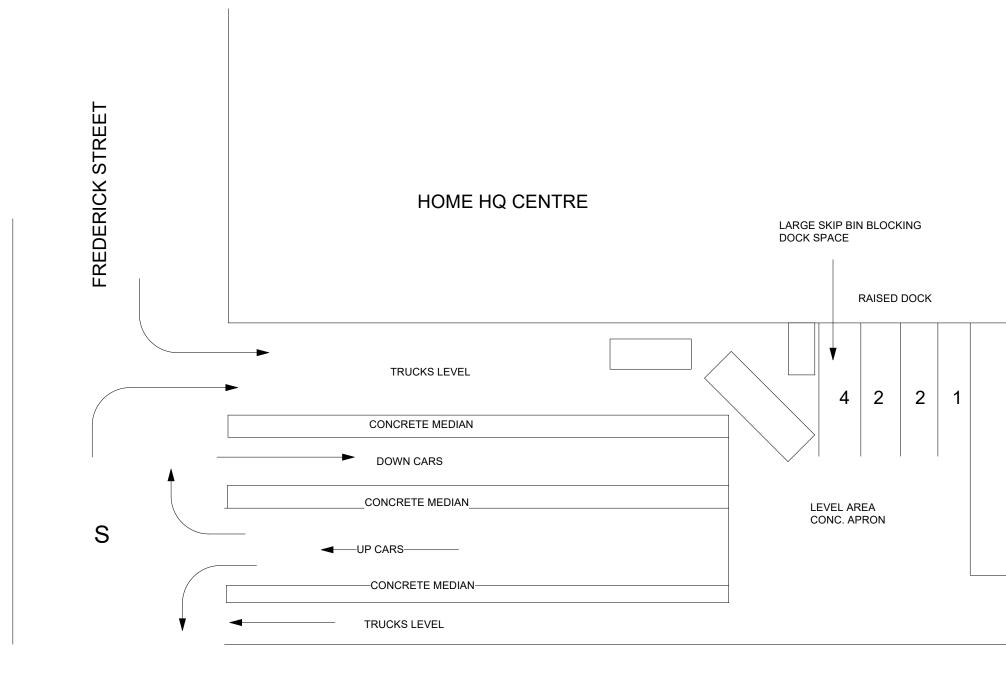
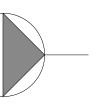



FIGURE 3 LOADING DOCK PLAN

1 FREDERICK STREET ARTARMON

5/ TURNING BAY

3.0 COMPARISON ANALYSIS – SPECIALISED RETAIL

The loading bay analysis shows that on average there are 4 MRV and 4 small van spaces required for 24191m² of GFA based on data recorded at 1 Frederick Street Artarmon.

The occupancy rate can be pro-rata to GFA for the site at 54 – 68 Hampstead Road and 276 – 282 Parramatta Road Auburn. This GFA is for specialised retail on the total site.

2 Bachell Avenue Lidcombe	1 Frederick Street Artarmon
3625m ² GFA	24191m ² GFA

Pro-rata rate = 0.15

The required number of loading bays is 0.15×8 bays = 1.2 loading bays.

The required number of loading bays was calculated in the master planning **Report No 18-22** under Section 3.9. as 1.81 loading bays. However, 1.2 parking bays will cater for this demand.

4.0 CONCLUSION

The loading dock capacity analysis demonstrates that the demand for specialised retail based on a comparison to a similar facility requires 1.2 spaces.

APPENDICES

APPENDIX A

Planning circular

PLANNING SYSTEM

food and d	nts to retail land use definitions - garden centre, artisan rink industry, local distribution premises, nood supermarkets and specialised retail premises
Circular	PS 18-008
Issued	31 Aug 2018 (replaces version issued 27 July 2018)
Related	PS 13-001

Amendments to Retail Land Use Definitions

This Circular is to advise local councils and other relevant planning authorities, community, industry and practitioners of a number of retail land use definitions (new or revised) introduced into the Standard Instrument (Local Environmental Plans) Order 2006 and certain other environmental planning instruments.

Updating retail land uses

The NSW retail sector is dynamic and highly competitive. With constantly evolving consumer preferences and technology continuing to transform traditional retail, the NSW planning system must be able to adapt.

The NSW Department of Planning and Environment exhibited five strategic amendments to retail land uses from 3 April 2018 to 18 May 2018. The proposed definition amendments aimed to provide consistency, efficiency and clarity to the NSW planning system for retail and include:

- A new definition for 'artisan food and drink industry';
- A revised definition for 'garden centre'
- A new definition for 'local distribution premises'
- A new definition for 'neighbourhood supermarkets'; and
- Replacement of the definition for 'bulky goods premises' with 'specialised retail premises'.

This Planning Circular provides an overview of the purpose of the amendments, and the impact of the change for local government, stakeholders and the community.

Revised 'garden centre' definition

Overview of the amendment

A revised definition of 'garden centre' has been included in the *Standard Instrument (Local Environmental Plans) Order 2006* (SI LEP Order) to clarify the type of uses that may be included in a garden centre and to remove the requirement for the uses to be ancillary to the retail sale of plants and landscaping and gardening supplies and equipment.

The amended definition of 'garden centre' replaces all definitions of 'garden centre' in standard instrument local environmental plans and certain other environmental planning instruments.

Purpose of the amendment

The revised definition of 'garden centre' seeks to balance the views of stakeholders and deliver a contemporary definition which responds to the changing nature of the garden centre format.

The amendment to the SI LEP Order restructures the definition of 'garden centre' to clarify the principal and complementary uses that may be carried out in a garden centre. It removes the term 'ancillary', lists the uses that may be associated with a garden centre and restructures the definition to remove ambiguity.

Garden centres have evolved into places where customers can shop for their gardening and outdoor improvement needs. The amendment allows for a mix of complementary uses to better serve customer needs.

Revised 'garden centre' definition

The definition of 'garden centre' will now read:

garden centre means a building or place the principal purpose of which is the retail sale of plants and landscaping and gardening supplies and equipment. It may include a restaurant or cafe and the sale of any of the following: There is also a growing requirement for a larger floor plate because of the quantity and range of products on offer, rather than the size of an individual product.

The new definition of 'specialised retail premises' differs from the previous definition of 'bulky goods premises' in that:

- It is no longer a requirement that the goods be of such a size or weight as to require both a large area for handling, display and storage and direct vehicular access to loading facilities for members of the public. Only one of these requirements needs to be met.
- Retailers that stock a large quantity or volume of products are characterised as specialised retail premises even if those products are not large or heavy, but the quantity or volume of goods requires a large area for handling, display and storage or direct vehicular access to loading facilities for members of the public.

New 'specialised retail premises' definition

The new definition of 'specialised retail premises' is:

specialised retail premises means a building or place the principal purpose of which is the sale, hire or display of goods that are of a size, weight or quantity, that requires:

(a) a large area for handling, display or storage, or

(b) direct vehicular access to the site of the building or place by members of the public for the purpose of loading or unloading such goods into or from their vehicles after purchase or hire,

but does not include a building or place used for the sale of foodstuffs or clothing unless their sale is ancillary to those goods being sold, hired or displayed.

Note. Examples of goods that may be sold at specialised retail premises include automotive parts and accessories, household appliances and fittings, furniture, homewares, office equipment, outdoor and recreation equipment, pet supplies and party supplies.

Specialised retail premises are a type of retail premises—see the definition of that term in this Dictionary.

Types of goods that fall within the definition of 'specialised retail premises'

The definition includes a list of examples of goods that may be sold, displayed or hired at specialised retail premises. The term 'goods' includes accessories, equipment and supplies.

This list of examples is not exhaustive or exclusive – any goods that are of such a size, weight or quantity so as to require a large area for handling, display and storage or direct vehicular access to loading facilities for members of the public will meet the definition. Types of goods that fall within the definition include:

- animal supplies including equestrian and pet goods;
- automotive parts and accessories;
- camping, outdoor and recreation goods;
- electric light fittings;
- floor, wall and window coverings;
- furniture, bedding, furnishings, fabric and manchester and homewares;
- household appliances and fittings;
- household electrical goods and home entertainment goods;
- party supplies;
- swimming pools and spas;
- office equipment and supplies;
- baby and children's goods, children's play equipment and accessories;
- barbeques, fireplaces and gas appliances;
- sporting, cycling, leisure, fitness goods and accessories;

Ancillary goods

A comprehensive and full range of goods, of all shapes and sizes, can be sold, displayed and hired in a 'specialised retail premises'.

A 'specialised retail premises' can include the sale and display of foodstuffs and clothing, however they must be ancillary and/or incidental and/or sold in conjunction to the goods which meet one of the two nominated tests in the definition.

Land use permissibility

'Specialised retail premises' will replace 'bulky goods premises' wherever the term occurs in a Standard Instrument LEP. This means 'specialised retail premises' will be permissible wherever 'bulky good premises' were permissible.

Like 'bulky goods premises', 'specialised retail premises' will be a subset of 'retail premises' and 'commercial premises' and will be permissible wherever these uses are permissible (as long as 'specialised retail premises' are not specifically prohibited). 'Specialised retail premises' will also remain a mandated permissible use in the B5 Business Development zone.

Need for the change

The Department has received submissions from industry and councils that the current definition of 'bulky goods premises' does not reflect the current and future direction of large format retailing. The new definition clarifies that 'specialised retail premises' includes, the display, sale or hire of goods that are of a size or weight, or a quantity of products to require a large floor area or access for customer loading facilities. APPENDIX B

Curtis Traffic Surveys

Job:230201lm (1193_2_23)Client:Lyle Marshall & PartnersDay, dateTue 14 Feb 23Location:I Frederick StWeather:Fine early, rain in afternoonSurveyorMC

LOCATION WHERE PARKED

		on rear	No of					Turning	Drivewa	Departure		Number of
Arrival tim	e Vehicle type	axles?	axles	Bay I	Bay 2	Bay 3	Bay 4	Area	у	' time	Length of sta	
<9:00	2 axle truck	yes	2							09:15		
<9:00	van	no	2	_						>17:00	>8:00	
<9:00	utility	no	2	2				I		>17:00	>8:00	
	07 2 axle truck	yes	2	2						09:23		
	10 utility	no	2	2				I		09:27	00:17	
09:	10 van	no	2	2				I		09:50	00:40	
09:	18 utility	no	2	2				I		09:28	00:10	
<mark>9:00-9:30:0</mark>	DO AM			1	1	0	0	5	0			
09:	40 van	no	2	2				I		10:12	00:32	
09:	42 van	no	2	2 1						10:03	00:21	
	48 2 axle truck	yes	2)		1				10:00		
	51 2 axle truck	yes)						10:18		
	52 2 axle truck	yes yes			· ·					09:59		
		,						1				
	54 2 axle truck	yes	2	-						10:36	00:42	
<mark>9:30-10:00</mark>							0	4	0			
	04 utility	no	2	2						10:21	00:17	
	06 utility	no	2	2 1						10:12		
10:	22 2 axle truck	yes	2	2						11:00	00:38	
10:	23 2 axle truck	yes	2	2		1				10:43	00:20	
10:	26 2 axle truck	yes	2	2 1						10:28	00:02	
10:00-10:3	0:00 AM	,					0	2	0			
10:		3 yes	3	3		1				11:01	00:28	
	35 van	no				-		1		10:36		
	45 van	no						•		10:30		
				2					· ·			
	52 van	no	4							11:13		
	55 2 axle truck	yes	2	2						: 7		
	59 2 axle truck	yes	2	2						11:15	00:16	
10:30-11:0					0	I	0	3	3			
	07 van	no	2	2					1	11:18		
	15 2 axle truck	yes	2	2						11:32		
	18 van	no	2							11:30		
	27 van	no	2	2 1						11:35		
	27 2 axle truck	yes	2	2						11:28	00:01	
<mark> :00- :3</mark>					0	1	0	3	2		00.10	
	30 2 axle truck	yes	4	<u>/</u>				I		11:48		
	32 2 axle truck	yes	4		ļ	ļ.,			I	:37	00:05	
	43 2 axle truck 44 van	yes no	4	-						:57 2:09	00:14	
	44 van 48 2 axle truck	yes		-						12:09		
	51 2 axle truck	yes		,	 					12:13		
11:30-12:0		/	4	- 0			0	3	2	12.00	00.15	
	13 van	no	2				0	5		12:32	00:19	
	20 2 axle truck	yes		2						12:32		
	24 2 axle truck	yes		2 1						12:10		
12:		3 yes	3	3		Ι I				12:35		
12:00-12:3					0		0	4	0			
	30 2 axle truck	yes	2	2	1					12:36	00:06	
12:	31 2 axle truck	yes	2	2		Г				3:07	00:36	
12:	35 2 axle truck	yes	2	2 1						12:58	00:23	Í
12:	59 2 axle truck	yes	2	2		Г				3:06	00:07	1
<mark>12:30-1:00</mark>	:00 PM				I	I	0	2	0			
	08 2 axle truck	yes	2	2		I				13:21	00:13	
	12 van	no	2	2	I					3: 5		
	20 2 axle truck	yes	2	2	I					3:42		
13:	22 2 axle truck	yes			1	i	ī		1	13:44	00:22	1

48	13:25	van	no	2					I		13:41	00:16	I
49	13:26		no	2		I					13:39	00:13	
	1:00-1:30:00 F				0	I	I	0	3	0			5
50		2 axle truck	yes	2		I					13:56		
51	13:52		no	2	I						13:54	00:02	
	1:30-2:00:00 F				I		0	0	2	0			4
52	14:04		no	2	Ι						14:32	00:28	
53	14:05	van	no	2		I					14:21	00:16	
54	14:11	2 axle truck	yes	2			Г				14:42	00:31	
55	14:12	van	no	2					I		14:25	00:13	
56	14:15	van	no	2					I		14:31	00:16	
57		2 axle truck	yes	2		Ι					14:53	00:35	
58		2 axle truck	yes	2			I				14:37	80:00	
	2:00-2:30:00 F				I	I	I	0	4	0			7
59	14:49	2 axle truck	yes	2		I					14:53	00:04	
60	14:51	van	no	2	I						15:00	00:09	
	2:30-3:00:00 F	PM			I	I	0	0	2	0			4
61	15:14	van	no	2		Ι					16:05	00:51	
62	15:18	van	no	2			I				15:42	00:24	
63	15:28	2 axle truck	yes	2	I						15:40	00:12	
64	15:37	3 axle rigid truck	yes	3					Ι		>17:00	>1:27	
65		2 axle truck	yes	2	I						15:52	00:07	
	3:00-4:00:00 F				I	I	1	0	3	0			6
66	16:07		no	2		I					16:27	00:20	
67		2 axle truck	yes	2			I				>17:00	>0:14	
	4:00-5:00:00 F	M			0	I	1	0	2	0			4
	Average Servi	ce l'ime										00:17	

Legend

van small vans and utilitys normal car space required

Length of stay over 6 hours

Curtis Traffic Surveys

			on rear						Turning	Drivewa	Departur		Total Number o
Arriva	al time	Vehicle type	axles?	No of axles	Bay I	Bay 2	Bay 3	Bay 4	Area	у	e time	Length of sta	bays required
<9:00		2 axle truck		2			I				09:03	<0:03	
<9:00		2 axle truck	1	2		1					11:10	<2:10	1
<9:00		utility	0	2							09:01	<0:01	
<9:00		van	0	2					1		15:49	<6:49	
<9:00		utility	0									<6:19	
<9:00		van	0						I			<0:43	
	09:03	2 axle truck	I	2			I				09:21	00:18	
	09:16	utility	0	2							10:44	01:28	
	09:19	2 axle truck		2			I				09:22	00:03	1
	09:29	2 axle truck	1	2			I				09:52	00:23	
<u>9.00-9</u>	:30:00				0	0	1	0	4				
7.00-7	09:35			2	v	•	•		•	•	10:25	00:50	
			0			1							
		2 axle truck	I	2							10:05		
	09:41	2 axle truck		2							10:22	00:41	blockage to b
	09:48	2 axle truck		2							10:54	01:06	1
	09:53	2 axle truck		2							11:51	01:58	
		2 axle truck	1	2					1	1	11:25		1
0.20 I	0:00:00		·	2	0			0		5		01.01	
7.30-I				-	0	1		0	2	5		A · A ·	blacks i '
		2 axle truck		2							11:50		blockage to b
	10:35	2 axle truck		2							11:12	00:37	
10:00-	-10:30:0	0 AM			0	0	0	0	2	7			
	10:40	2 axle truck		2							10:43	00:03	blockage to b
		2 axle truck		2							11:35		<u> </u>
	10:56		0										
			0	Ζ							11:22	00:26	
10:30-	-11:00:0				0	0	0	0	2	10			
	11:06	2 axle truck	I	2							11:11	00:05	
	11:12	van	0	2					I		11:27	00:15	
	11:13		0	2							11:20	00:07	
		2 axle truck	-	2							11:26		
11.00			'	2		0			2	· ·	11.20	00.07	
11:00-	<mark>-11:30:0</mark>				0	0	0	0	3	3		00.12	
	11:31		0	2							11:44		
		2 axle truck	1	2			I				11:55		
		2 axle truck		2							12:31	00:50	
	11:46		0	2	I						11:54		
		2 axle truck	I	2					I		12:02		
		2 axle truck		2					I		12:02		
	11:58		0	2			I				12:16	00:18	
11:30-	-12:00:0				-	1	I	0	4	0			
		2 axle truck		2							12:17	00:17	
	12:23		0	2							12:38	00:15	1
<mark> :00- </mark>	:30:00					I	0	0	2	0			
		2 axle truck	I	2			I				13:32		
	13:06	2 axle truck	1	2		I I					13:23	00:17	1
	13:08	van	0	2	l						13:21	00:13	1
<mark>1:30-2</mark>	2:00:00	PM			I	I	I	0	2	0			
	13:34	van	0	2					I		13:51	00:17	
	13:38	van	0	2	I						13:51	00:13	1
	13:46	van	0	2		I					14:53	01:07	1
	13:46		0	2							14:03	00:17	1
		2 axle truck	1	2						1	15:59		1
	13:50		0	2							14:00		1
2:00-2	2:30:00			_				0	3	2			
	14:09		0	2							4:31	00:22	
		2 axle truck		2							14:42		1
<u>2.30 s</u>	B:00:00			2		0	I	0)	0		00.52	
2.50-5		2 axle truck	-	۰ ۲		0					15:49	01:17	
		2 axle truck 2 axle truck		2							15:49	01:17	
			0	2					<u> </u>		15:52		
	14:59		0	2							15:52	00:53	
2.00	0.30.00	ri'i				0	0	0	3				
3:00-3	15:00		0	2							15:06	00:06	

51	15:12	van	0	2							16:19	01:07	
52	15:15	van	0	2					I		>17:00	>1:45	
53	15:23	2 axle truck	Г	2	1						15:40	00:17	
	3:30-4:00:00	PM			I	2	I	0	I	0			5
54	15:36	van	0	2					I		17:00	01:24	
55	16:05	van	0	2					I		16:13	00:08	
56	16:12	2 axle truck	I	2			I				16:39	00:27	
57	[6:2]	car	0	2		I					16:35	00:14	
58	16:21	2 axle truck	I	2	Γ						>17:00	>0:39	
	4:00-4:30:00				I	1	1	0	2	0			5
	Average Serv	ice Time										00:34	
	Legend	I											

Length of stay over 6 hours

van small vans and utilitys normal car space required

Curtis Traffic Surveys

Job:230201lm (1193_2_23)Client:Lyle Marshall & PartnersDay, dateThu 16 Feb 23Location:I Frederick StWeather:FineSurveyorMC

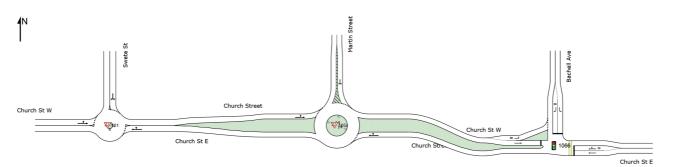
			on rear	No of					Turning	Entry	Departure		Number of
	Arrival time	Vehicle type	axles?	axles	Bay I	Bay 2	Bay 3	Bay 4	Area	Driveway	time	Length of sta	bays required
1	<9:00	2 axle truck	yes	2			I				09:21	>0:21	
2	<9:00	2 axle truck	yes	2							09:07	>0:07	
3	<9:00	van	no	2					I		16:41	>7:41	
4	09:07	2 axle truck	yes	2		1					09:25	00:18	
5	09:08	van	no	2							11:11	02:03	
6	09:27	2 axle truck	yes	2							09:30	00:03	
	9:00-9:30:00	AM	, 				1	0	2	0			5
7		2 axle truck	yes	2					1		09:44	00:02	
8		2 axle truck	yes	2			1				09:57	00:14	4
9		ute with trailer	no	3			· · ·				10:15	00:26	
10		2 axle truck		2							10:10		
10		2 axle truck	yes			1					10:10	00:14	
			yes	2									
12	09:59		no	2			1				10:05	00:06	
	9:30-10:00:00				l	I	1	0	2	0			5
13		2 axle truck	yes	2							>17:00	>6:57	
14	10:18	van	no	2	I						10:22	00:04	
15	10:32	van	no	2							10:50	00:18	
16	10:36	van	no	2						I	10:50	00:14	
17	10:44	2 axle truck	yes	2			I				11:05	00:21	
18	10:59	2 axle truck	yes	2		I					11:11	00:12	
	10:30-11:00:0	0 AM	-			2	1	0	2				7
19	11:08	van	no	2							11:23	00:15	
20	11:14		no	2					1		11:22	00:08	
	11:00-11:30:0				0	0	0	0	3	0			3
21		2 axle truck	yes	2		, v	, v	v		, v	:49	00:19	
22			,	2							11:38		
23	11:33		no	2		1					11:38		
			_						1				
24		2 axle truck	yes	2		ļ	· ·				12:27	00:48	
25		2 axle truck	yes	2							:59	00:14	
24	11:30-12:00:0				I	2		0	2	0		00.00	6
26 27	12:00	van 2 axle truck	no	2			1				12:08 14:14		
27 28	12:01		yes no	2							14:14		
20 29	12:17		no	2	· · · ·						12:25	00:52	
30	12:18		no	2		-			l i		2:2	00:03	
31		2 axle truck	yes	2		1					13:09		
	12:00-12:30:0		-		2		I	0	2	0			6
32	12:33	2 axle truck	yes	2					1		12:37	00:04	
33	12:51		no	2					I		13:00		
34		2 axle truck	yes	2							14:56	01:59	
<u> </u>	12:30-1:00:00				0		0	0	3	0			4
35		2 axle truck	yes	2							3:3		
36 27	13:08		no	2		ļ					3:33		
37 38	13:10 13:12		no	2							3:35 3:21	00:25	
38 39		van 2 axle truck	no yes	2							13:21		
40	13:14		no	2							13.28		
41		2 axle truck	yes	2			T T		-		14:15		
	1:00-1:30:00		,	_				0	3	0			6
42	13:46		no	2							14:00	00:14	-
43	13:53		no	2					I		13:54		
44		2 axle truck	yes	2		Г					14:23	00:25	1
	1:30-2:00:00	PM			0		0	0	3	0			4
45			no	2	I						14:20		
46	14:03	2 axle truck	yes	2			<u> </u>				14:41	00:38	1

47	14:05		no	2						I	14:23	00:18	
	2:00-2:30:00				l	0	I	0	1	I			4
48	14:50	2 axle truck	yes	2							14:59	00:09	
49	14:53	van	no	2			I				15:28		
50	14:54		no	2		I					15:21	00:27	
-	2:30-3:00:00	PM			0	2	I	0		0			4
51	15:06	van	no	2	Г						15:57	00:51	
52	15:25	2 axle truck	yes	2	Г						15:36	00:11	
53	15:27	2 axle truck	yes	2			I				16:16	00:49	
	3:00-3:30:00	PM			2	0	I	0		0			4
54	15:38	van	no	2		I					15:45	00:07	
55	15:41	2 axle truck	yes	2	Г						16:39	00:58	
56	16:07	2 axle truck	yes	2					I		16:09	00:02	
57	16:09	van	no	2		I					16:35	00:26	
58	16:24	utility	no	2					1		16:48	00:24	
-	3:30-4:00:00	PM			I	I	0	0	3	0			5
7	Average Serv	ice l'ime										00:26	
	_egend												

Length of stay over 6 hours

van small vans and utilitys normal car space required

APPENDIX K


NETWORK LAYOUT

■ Network: N102 [Existing AM Network Swete-St-Martin-

Bachell Ave (Network Folder: General)]

New Network Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SITES IN I	SITES IN NETWORK							
Site ID	CCG ID	Site Name						
₩ 101	NA	Existing AM: Church St/Swete St, Lidcombe						
₩105v	NA	EXISTING AM: BACHELL Ave/ Martin St						
1066	NA	Existing AM: Church St/Bachell Ave, Lidcombe						

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 26 September 2024 3:24:34 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

INTERSECTION SUMMARY

V Site: 101 [Existing AM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing AM Network Swete-St-Martin-Bachell Ave (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Performance Measure	Vehicles:	All MCs	Persons
ravel Speed (Average)	km/h	45.2	45.2 km/h
Travel Distance (Total)	veh-km/h	1004.5	1205.4 pers-km/h
Travel Time (Total)	veh-h/h	22.2	26.6 pers-h/h
Desired Speed	km/h	51.4	·
Speed Efficiency		0.88	
ravel Time Index		8.66	
Congestion Coefficient		1.14	
Ŭ			
Demand Flows (Total)	veh/h	1143	1372 pers/h
Arrival Flows (Total)	veh/h	1143	1372 pers/h
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.455	
Practical Spare Capacity	%	86.7	
Effective Intersection Capacity	veh/h	2511	
Control Delay (Total)	veh-h/h	2.04	2.44 pers-h/h
Control Delay (Average)	sec	6.4	6.4 sec
Control Delay (Worst Lane by MC)	sec	7.3	
Control Delay (Worst Movement by MC)	sec	8.7	8.7 sec
Geometric Delay (Average)	sec	5.2	
Stop-Line Delay (Average)	sec	1.3	
dling Time (Average)	sec	0.0	
ntersection Level of Service (LOS)		LOS A	
Varage Reak of Queue Veh (Waret Lane)	voh	1.4	
Average Back of Queue - Veh (Worst Lane)		9.8	
Average Back of Queue - Dist (Worst Lane)	111	9.8 0.02	
Ave. Que Storage Ratio (Worst Lane)	veh/h	652	792 para/b
Effective Stops (Total) Effective Stop Rate	ven/n	0.57	782 pers/h 0.57
Proportion Queued		0.57	0.57
Performance Index		30.3	30.3
		30.3	30.3
Cost (Total)	\$/h	832.52	832.52 \$/h
Fuel Consumption (Total)	L/h	81.4	002.02 ¢m
Carbon Dioxide (Total)	kg/h	191.4	
Tydrocarbons (Total)	kg/h	0.015	
Carbon Monoxide (Total)	kg/h	0.013	
NOx (Total)	kg/h	0.054	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.0 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.2% 0.7%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	548,716	658,459 pers/y						
Arrival Flows (Total)	veh/y	548,716							
Delay (Total)	veh-h/y	977	1,172 pers-h/y						
Effective Stops (Total)	veh/y	312,925	375,510 pers/y						
Travel Distance (Total)	veh-km/y	482,145	578,574 pers-km/y						
Travel Time (Total)	veh-h/y	10,657	12,788 pers-h/y						
, , , , , , , , , , , , , , , , , , ,	•								
Cost (Total)	\$/y	399,612	399,612 \$/y						
Fuel Consumption (Total)	L/y	39,093							
Carbon Dioxide (Total)	kg/y	91,868							
Hydrocarbons (Total)	kg/y	7							
Carbon Monoxide (Total)	kg/y	80							
NOx (Total)	kg/y	26							

1 Hours per Year: 480 (Network)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:40 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

MOVEMENT SUMMARY

V Site: 101 [Existing AM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing AM Network Swete-St-Martin-Bachell Ave (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows		rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			,	km/h
East:	Churc	h St E													
5	T1	All MCs	171	0.0	171	0.0	0.299	6.0	LOS A	0.8	5.4	0.45	0.60	0.45	48.1
6	R2	All MCs	156	0.0	156	0.0	0.299	8.7	LOS A	0.8	5.4	0.45	0.60	0.45	47.5
Appro	bach		326	0.0	326	0.0	0.299	7.3	LOS A	0.8	5.4	0.45	0.60	0.45	47.8
North	: Swet	te St													
7	L2	All MCs	97	0.0	97	0.0	0.270	6.0	LOS A	0.7	4.7	0.47	0.61	0.47	41.7
9	R2	All MCs	185	0.0	185	0.0	0.270	7.9	LOS A	0.7	4.7	0.47	0.61	0.47	44.1
Appro	bach		282	0.0	282	0.0	0.270	7.2	LOS A	0.7	4.7	0.47	0.61	0.47	43.6
West	Chur	ch St W													
10	L2	All MCs	321	0.0	321	0.0	0.455	5.8	LOS A	1.4	9.8	0.48	0.53	0.48	44.9
11	T1	All MCs	214	0.0	214	0.0	0.455	5.0	LOS A	1.4	9.8	0.48	0.53	0.48	42.9
Appro	bach		535	0.0	535	0.0	0.455	5.5	LOS A	1.4	9.8	0.48	0.53	0.48	44.4
All Ve	hicles		1143	0.0	1143	0.0	0.455	6.4	LOS A	1.4	9.8	0.47	0.57	0.47	45.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:40 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

INTERSECTION SUMMARY

Site: 105v [EXISTING AM: BACHELL Ave/ Martin St (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing AM Network Swete-St-Martin-Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

Derfermenes Messure	Vahialaa		Dereene
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	38.0	38.0 km/h
Travel Distance (Total)	veh-km/h	279.9	335.8 pers-km/h
Fravel Time (Total)	veh-h/h	7.4	8.8 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency		0.63	
Travel Time Index		5.93	
Congestion Coefficient		1.58	
Demand Flows (Total)	veh/h	1143	1372 pers/h
Arrival Flows (Total)	veh/h	1143	1372 pers/h
Percent Heavy Vehicles (Demand)	%	0.0	·
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.442	
Practical Spare Capacity	%	92.3	
Effective Intersection Capacity	veh/h	2587	
	la la lla	0.04	0.00 m and h //h
Control Delay (Total)	veh-h/h	2.21	2.66 pers-h/h
Control Delay (Average)	sec	7.0	7.0 sec
Control Delay (Worst Lane by MC)	sec	8.5	10.0
Control Delay (Worst Movement by MC)	sec	10.0	10.0 sec
Geometric Delay (Average)	sec	5.5	
Stop-Line Delay (Average)	sec	1.5	
dling Time (Average)	sec	0.0	
ntersection Level of Service (LOS)		LOS A	
Average Back of Queue - Veh (Worst Lane)	veh	1.7	
Average Back of Queue - Dist (Worst Lane)	m	11.8	
Ave. Que Storage Ratio (Worst Lane)		0.06	
Effective Stops (Total)	veh/h	630	757 pers/h
Effective Stop Rate		0.55	0.55
Proportion Queued		0.48	0.48
Performance Index		16.7	16.7
Cost (Total)	\$/h	377.76	377.76 \$/h
Fuel Consumption (Total)	L/h	45.6	
Carbon Dioxide (Total)	kg/h	107.2	
Hydrocarbons (Total)	kg/h	0.011	
Carbon Monoxide (Total)	kg/h	0.011	
NOx (Total)	kg/h	0.047	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.0 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.3% 0.8%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	548,716	658,459 pers/y						
Arrival Flows (Total)	veh/y	548,716							
Delay (Total)	veh-h/y	1,063	1,276 pers-h/y						
Effective Stops (Total)	veh/y	302,607	363,129 pers/y						
Travel Distance (Total)	veh-km/y	134,338	161,205 pers-km/y						
Travel Time (Total)	veh-h/y	3,536	4,243 pers-h/y						
, , , , , , , , , , , , , , , , , , ,	•								
Cost (Total)	\$/y	181,323	181,323 \$/y						
Fuel Consumption (Total)	L/y	21,901							
Carbon Dioxide (Total)	kg/y	51,466							
Hydrocarbons (Total)	kg/y	5							
Carbon Monoxide (Total)	kg/y	54							
NOx (Total)	kg/y	23							

1 Hours per Year: 480 (Network)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:40 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

MOVEMENT SUMMARY

V Site: 105v [EXISTING AM: BACHELL Ave/ Martin St (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing AM Network Swete-St-Martin-Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	COf Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	Churc	h Street													
5	T1	All MCs	171	0.0	171	0.0	0.297	5.9	LOS A	0.7	5.2	0.37	0.60	0.37	29.5
6	R2	All MCs	156	0.0	156	0.0	0.297	9.8	LOS A	0.7	5.2	0.37	0.60	0.37	37.1
Appro	bach		326	0.0	326	0.0	0.297	7.8	LOS A	0.7	5.2	0.37	0.60	0.37	34.2
North	: Marti	in Street													
7	L2	All MCs	97	0.0	97	0.0	0.269	5.8	LOS A	0.8	5.3	0.52	0.61	0.52	33.7
9	R2	All MCs	185	0.0	185	0.0	0.269	10.0	LOS A	0.8	5.3	0.52	0.61	0.52	33.7
Appro	bach		282	0.0	282	0.0	0.269	8.5	LOS A	0.8	5.3	0.52	0.61	0.52	33.7
West	Chur	ch Street													
10	L2	All MCs	321	0.0	321	0.0	0.442	5.5	LOS A	1.7	11.8	0.52	0.49	0.52	42.9
11	T1	All MCs	214	0.0	214	0.0	0.442	5.9	LOS A	1.7	11.8	0.52	0.49	0.52	38.9
Appro	bach		535	0.0	535	0.0	0.442	5.7	LOS A	1.7	11.8	0.52	0.49	0.52	41.7
All Ve	hicles		1143	0.0	1143	0.0	0.442	7.0	LOS A	1.7	11.8	0.48	0.55	0.48	38.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:40 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

INTERSECTION SUMMARY

Site: 1066 [Existing AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing AM Network Swete-St-Martin-Bachell Ave (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Practical Cycle Time)

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	km/h veh-km/h veh-h/h	43.0 599.1 13.9	2.4 km/h 1.1 ped-km/h 0.4 ped-h/h	42.0 km/h 720.0 pers-km/h 17.2 pers-h/h
Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h	60.0 0.72 6.85 1.40		
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals)	veh/h veh/h %	978 978 0.1 0.1	53 ped/h	1226 pers/h 1226 pers/h
Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	% veh/h	0.626 43.7 1561	0.029	
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC)	veh-h/h sec sec	3.61 13.3 20.7	0.21 ped-h/h 14.5 sec	4.54 pers-h/h 13.3 sec
Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) dling Time (Average)	sec sec sec sec	20.7 3.5 9.8 6.7	14.5 sec	20.7 sec
ntersection Level of Service (LOS)		LOS B	LOS B	
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane)		2.6 18.3 0.04		
Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh/h	697 0.71 0.71 34.5	45 ped/h 0.85 0.85 0.7	881 pers/h 0.72 0.72 35.2
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total)	\$/h L/h kg/h kg/h kg/h	543.36 60.6 142.5 0.013 0.16	10.74 \$/h	554.10 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 4.4% 0.0% 0.0%

Intersection Performance - Annual Values

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	469,390	25,263 ped/y	588,531 pers/y
Arrival Flows (Total) Delay (Total)	veh/y veh-h/y	469,390 1.732	102 ped-h/y	2,180 pers-h/y
Effective Stops (Total)	veh/v	334.435	21,521 ped/y	422,843 pers/y
Travel Distance (Total)	veh-km/y	287,579	505 ped-km/y	345,600 pers-km/y
Travel Time (Total)	veh-h/y	6,690	210 ped-h/y	8,238 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	260,811 29,108 68,411 6 77 25	5,156 \$/y	265,966 \$/y

1 Hours per Year: 480 (Network)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:40 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

MOVEMENT SUMMARY

Site: 1066 [Existing AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing AM Network Swete-St-Martin-Bachell Ave (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Practical Cycle Time)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E	ven/m	/0	ven/m	/0	V/C	360	_	Ven	111	_	_	_	K111/11
5	T1	All MCs	147	0.1	147	0.1	0.345	6.8	LOS A	1.7	11.7	0.70	0.58	0.70	23.2
6	R2	All MCs	107	0.1	107	0.1	*0.345	16.4	LOS B	1.7	11.7	0.80	0.69	0.80	42.0
Appro	bach		255	0.1	255	0.1	0.345	10.9	LOS B	1.7	11.7	0.74	0.63	0.74	36.4
North	: Bach	ell Ave													
7	L2	All MCs	105	0.1	105	0.1	0.108	10.8	LOS B	0.6	4.5	0.53	0.69	0.53	43.8
9	R2	All MCs	172	0.1	172	0.1	*0.411	20.7	LOS C	1.9	13.1	0.90	0.78	0.90	35.9
Appro	bach		277	0.1	277	0.1	0.411	16.9	LOS B	1.9	13.1	0.76	0.75	0.76	38.9
West	: Chur	ch St W													
10	L2	All MCs	233	0.0	233	0.0	0.194	7.0	LOS A	0.6	4.2	0.39	0.66	0.39	51.8
11	T1	All MCs	214	0.0	214	0.0	*0.626	18.3	LOS B	2.6	18.3	0.97	0.83	1.07	39.9
Appro	bach		446	0.0	446	0.0	0.626	12.4	LOS B	2.6	18.3	0.67	0.74	0.72	46.9
All Ve	hicles		978	0.1	978	0.1	0.626	13.3	LOS B	2.6	18.3	0.71	0.71	0.73	43.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

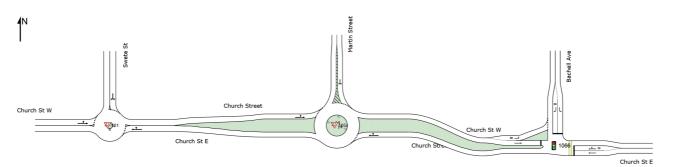
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mov	Pedestrian Movement Performance									
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	sec		ped	m			sec	m	m/sec
East: Church St E	Ξ									
P2 Full	53	14.5	LOS B	0.1	0.1	0.85	0.85	29.9	20.0	0.67
All Pedestrians	53	14.5	LOS B	0.1	0.1	0.85	0.85	29.9	20.0	0.67

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements. SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:40 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9


NETWORK LAYOUT

■ Network: N102 [Existing AM Network Swete-St-Martin-

Bachell Ave (Network Folder: General)]

New Network Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SITES IN I	SITES IN NETWORK							
Site ID	CCG ID	Site Name						
₩ 101	NA	Existing AM: Church St/Swete St, Lidcombe						
₩105v	NA	EXISTING AM: BACHELL Ave/ Martin St						
1066	NA	Existing AM: Church St/Bachell Ave, Lidcombe						

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Created: Thursday, 26 September 2024 3:24:34 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

INTERSECTION SUMMARY

V Site: 101 [Existing PM: Church St/Swete St, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing PM Swete St- Martin St- Bachell Ave (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Intersection Performance - Hourly Val	ues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	45.7 866.6 18.9 52.0 0.88 8.66 1.14	45.7 km/h 1039.9 pers-km/h 22.7 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	985 985 0.0 0.344 147.0 2863	1182 pers/h 1182 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.75 6.4 7.1 8.7 5.3 1.1 0.0 LOS A	2.10 pers-h/h 6.4 sec 8.7 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		0.9 6.4 0.01 558 0.57 0.42 25.3	670 pers/h 0.57 0.42 25.3
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	711.18 69.9 164.2 0.013 0.15 0.046	711.18 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 0.0% 0.9%

Intersection Performance - Annual Values

Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	472,926	567,512 pers/y
Arrival Flows (Total)	veh/y	472,926	
Delay (Total)	veh-ĥ/y	839	1,007 pers-h/y
Effective Stops (Total)	veh/y	268,006	321,607 pers/y
Travel Distance (Total)	veh-km/y	415,956	499,147 pers-km/y
Travel Time (Total)	veh-h/y	9,093	10,912 pers-h/y
Cost (Total)	\$/y	341,365	341,365 \$/y
Fuel Consumption (Total)	L/y	33,532	
Carbon Dioxide (Total)	kg/y	78,801	
Hydrocarbons (Total)	kg/y	6	
Carbon Monoxide (Total)	kg/y	70	
NOx (Total)	kg/y	22	

1 Hours per Year: 480 (Network)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:45 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

MOVEMENT SUMMARY

V Site: 101 [Existing PM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing PM Swete St- Martin St- Bachell Ave (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	[Total I	ows HV]	FI Total		Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
East:	Churc	h St E	veh/h	%	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
East: Church St E															
5	T1	All MCs	233	0.0	233	0.0	0.344	6.0	LOS A	0.9	6.4	0.45	0.59	0.45	48.2
6	R2	All MCs	155	0.0	155	0.0	0.344	8.7	LOS A	0.9	6.4	0.45	0.59	0.45	47.6
Appro	bach		387	0.0	387	0.0	0.344	7.1	LOS A	0.9	6.4	0.45	0.59	0.45	47.9
North: Swete St															
7	L2	All MCs	92	0.0	92	0.0	0.244	5.7	LOS A	0.6	4.1	0.41	0.60	0.41	41.9
9	R2	All MCs	177	0.0	177	0.0	0.244	7.6	LOS A	0.6	4.1	0.41	0.60	0.41	44.2
Appro	bach		268	0.0	268	0.0	0.244	6.9	LOS A	0.6	4.1	0.41	0.60	0.41	43.7
West: Church St W															
10	L2	All MCs	154	0.0	154	0.0	0.288	5.6	LOS A	0.7	5.1	0.40	0.52	0.40	45.1
11	T1	All MCs	176	0.0	176	0.0	0.288	4.8	LOS A	0.7	5.1	0.40	0.52	0.40	43.3
Approach			329	0.0	329	0.0	0.288	5.2	LOS A	0.7	5.1	0.40	0.52	0.40	44.4
All Ve	hicles		985	0.0	985	0.0	0.344	6.4	LOS A	0.9	6.4	0.42	0.57	0.42	45.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:45 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

Site: 105v [EXISTING PM: BACHELL Ave/ Martin St (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing PM Swete St- Martin St- Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Val	ues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	36.9 217.1 5.9 60.0 0.61 5.72 1.63	36.9 km/h 260.5 pers-km/h 7.1 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	985 985 0.0 0.344 147.1 2864	1182 pers/h 1182 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	1.92 7.0 8.2 9.8 5.7 1.3 0.1 LOS A	2.30 pers-h/h 7.0 sec 9.8 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		0.9 6.3 0.06 545 0.55 0.41 13.5	654 pers/h 0.55 0.41 13.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	304.63 37.5 88.2 0.009 0.09 0.040	304.63 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.2% 0.7%

Intersection Performance - Annual Values

Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	472,926	567,512 pers/y
Arrival Flows (Total)	veh/y	472,926	
Delay (Total)	veh-ĥ/y	919	1,103 pers-h/y
Effective Stops (Total)	veh/y	261,435	313,722 pers/y
Travel Distance (Total)	veh-km/y	104,212	125,055 pers-km/y
Travel Time (Total)	veh-h/y	2,824	3,389 pers-h/y
Cost (Total)	\$/y	146,224	146,224 \$/y
Fuel Consumption (Total)	L/y	18,006	
Carbon Dioxide (Total)	kg/y	42,314	
Hydrocarbons (Total)	kg/y	4	
Carbon Monoxide (Total)	kg/y	44	
NOx (Total)	kg/y	19	

Site: 105v [EXISTING PM: BACHELL Ave/ Martin St (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing PM Swete St- Martin St- Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows HV]	FI [Total]	rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	COf Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	Churc	h Street													
5	T1	All MCs	233	0.0	233	0.0	0.344	5.9	LOS A	0.9	6.3	0.36	0.59	0.36	29.9
6	R2	All MCs	155	0.0	155	0.0	0.344	9.8	LOS A	0.9	6.3	0.36	0.59	0.36	37.4
Appro	bach		387	0.0	387	0.0	0.344	7.4	LOS A	0.9	6.3	0.36	0.59	0.36	34.0
North	: Marti	in Street													
7	L2	All MCs	92	0.0	92	0.0	0.244	5.5	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
9	R2	All MCs	177	0.0	177	0.0	0.244	9.6	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
Appro	bach		268	0.0	268	0.0	0.244	8.2	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
West	Chur	ch Street													
10	L2	All MCs	154	0.0	154	0.0	0.279	5.3	LOS A	0.9	6.3	0.44	0.48	0.44	43.3
11	T1	All MCs	176	0.0	176	0.0	0.279	5.6	LOS A	0.9	6.3	0.44	0.48	0.44	39.4
Appro	bach		329	0.0	329	0.0	0.279	5.5	LOS A	0.9	6.3	0.44	0.48	0.44	41.7
All Ve	hicles		985	0.0	985	0.0	0.344	7.0	LOS A	0.9	6.3	0.41	0.55	0.41	36.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:45 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

Site: 1066 [Existing PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing PM Swete St- Martin St- Bachell Ave (Network Folder: General)]

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Intersection Performance - Hourly Val	ues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	39.5 648.4 16.4 60.0 0.66 6.20 1.52	2.4 km/h 1.1 ped-km/h 0.4 ped-h/h	38.6 km/h 779.2 pers-km/h 20.2 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1162 1162 0.0 0.0 0.658 36.7 1766	53 ped/h 0.020	1447 pers/h 1447 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	5.36 16.6 23.2 23.2 3.8 12.8 9.5 LOS B	0.22 ped-h/h 15.2 sec 15.2 sec LOS B	6.65 pers-h/h 16.5 sec 23.2 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		5.8 40.6 0.04 872 0.75 0.75 48.3	41 ped/h 0.78 0.78 0.7	1087 pers/h 0.75 0.75 49.0
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	637.69 70.2 164.9 0.015 0.18 0.059	11.02 \$/h	648.71 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 3.7% 29.0% 0.0%

Intersection Performance - Annual V	alues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons

Demand Flows (Total) Arrival Flows (Total) Delay (Total) Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh/y veh-h/y veh/y veh-km/y veh-h/y	557,811 557,811 2,572 418,358 311,249 7,887	25,263 ped/y 107 ped-h/y 19,749 ped/y 505 ped-km/y 215 ped-h/y	694,636 pers/y 3,193 pers-h/y 521,778 pers/y 374,004 pers-km/y 9,680 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	306,092 33,683 79,158 7 88 28	5,287 \$/y	311,379 \$/y

Site: 1066 [Existing PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Existing PM Swete St- Martin St- Bachell Ave (Network Folder: General)]

PM Peak Hour: 5:00-6:00pm

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows	FI	rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back		e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Churc	h St E													
5	T1	All MCs	172	0.0	172	0.0	0.316	11.2	LOS B	2.0	14.1	0.76	0.61	0.76	19.0
6	R2	All MCs	54	0.0	54	0.0	*0.316	21.0	LOS C	2.0	14.1	0.80	0.66	0.80	40.4
Appro	bach		225	0.0	225	0.0	0.316	13.6	LOS B	2.0	14.1	0.77	0.62	0.77	28.9
North	: Bach	nell Ave													
7	L2	All MCs	126	0.0	126	0.0	0.113	10.2	LOS B	0.8	5.7	0.45	0.68	0.45	44.4
9	R2	All MCs	440	0.0	440	0.0	*0.658	20.8	LOS C	5.8	40.6	0.89	0.84	0.92	35.8
Appro	bach		566	0.0	566	0.0	0.658	18.5	LOS B	5.8	40.6	0.80	0.81	0.82	37.7
West:	Chur	ch St W													
10	L2	All MCs	171	0.0	171	0.0	0.133	6.7	LOS A	0.4	2.9	0.30	0.63	0.30	52.1
11	T1	All MCs	200	0.0	200	0.0	*0.641	23.2	LOS C	3.1	21.4	0.98	0.84	1.08	36.5
Appro	bach		371	0.0	371	0.0	0.641	15.6	LOS B	3.1	21.4	0.67	0.74	0.72	44.4
All Ve	hicles		1162	0.0	1162	0.0	0.658	16.6	LOS B	5.8	40.6	0.75	0.75	0.78	39.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

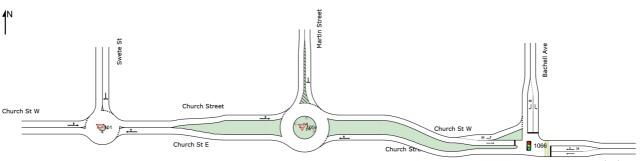
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	Pedestrian Movement Performance													
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed				
	ped/h	sec		ped	m		riato	sec	m	m/sec				
East: Church St E	=													
P2 Full	53	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65				
All Pedestrians	53	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.


NETWORK LAYOUT

■ Network: N101 [Existing plus BTG 2032-Swete St-Martin St-Bachell Avenue (Network Folder: General)]

New Network

Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Church St E

SITES IN I	NETWORK		
Site ID	CCG ID	Site Name	
₩ 101	NA	EX+BTG 2032 AM: Church St/Swete St, Lidcombe	
₩105v	NA	EXISTING+BTG 2032 AM: BACHELL Ave/ Martin St	
1066	NA	EX+BTG 2032 AM: Church St/Bachell Ave, Lidcombe	

V Site: 101 [EX+BTG 2032 PM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

 Network: N101 [Existing PM
 + BTG 2032-Swete St-Martin St-Bachell Ave (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Intersection Performance - Hourly Value			
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	45.7	45.7 km/h
Travel Distance (Total)	veh-km/h	866.6	1039.9 pers-km/h
Travel Time (Total)	veh-h/h	18.9	22.7 pers-h/h
Desired Speed	km/h	52.0	
Speed Efficiency		0.88	
Travel Time Index		8.66	
Congestion Coefficient		1.14	
Demand Flows (Total)	veh/h	985	1182 pers/h
Arrival Flows (Total)	veh/h	985	1182 pers/h
Percent Heavy Vehicles (Demand)	%	0.0	•
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.344	
Practical Spare Capacity	%	147.0	
Effective Intersection Capacity	veh/h	2863	
Control Delay (Total)	veh-h/h	1.75	2.10 pers-h/h
Control Delay (Average)	sec	6.4	6.4 sec
Control Delay (Worst Lane by MC)	sec	7.1	0.4 Sec
Control Delay (Worst Movement by MC)	sec	8.7	8.7 sec
Geometric Delay (Average)	sec	5.3	0.1 000
Stop-Line Delay (Average)	sec	1.1	
Idling Time (Average)	sec	0.0	
Intersection Level of Service (LOS)		LOS A	
Assessed as Deals of Oscillar (Mariat Laws)		0.0	
Average Back of Queue - Veh (Worst Lane)		0.9 6.4	
Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane)	m	0.4	
Effective Stops (Total)	veh/h	558	670 pers/h
Effective Stop Rate	VGH/H	0.57	0.57
Proportion Queued		0.42	0.42
Performance Index		25.3	25.3
Cost (Total)	\$/h	711.18	711.18 \$/h
Fuel Consumption (Total)	L/h	69.9	
Carbon Dioxide (Total)	kg/h	164.2	
Hydrocarbons (Total)	kg/h	0.013	
Carbon Monoxide (Total) NOx (Total)	kg/h kg/h	0.15 0.046	
	NY/11	0.040	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 0.0% 0.9%

Intersection Performance - An	nual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	472,926	567,512 pers/y
Arrival Flows (Total)	veh/y	472,926	
Delay (Total)	veh-h/y	839	1,007 pers-h/y
Effective Stops (Total)	veh/y	268,006	321,607 pers/y
Travel Distance (Total)	veh-km/y	415,956	499,147 pers-km/y
Travel Time (Total)	veh-h/y	9,093	10,912 pers-h/y
· /			
Cost (Total)	\$/y	341,365	341,365 \$/y
Fuel Consumption (Total)	L/y	33,532	
Carbon Dioxide (Total)	kg/y	78,801	
Hydrocarbons (Total)	kg/y	6	
Carbon Monoxide (Total)	kg/y	70	
NOx (Total)	kg/y	22	

V Site: 101 [EX+BTG 2032 PM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

 Network: N101 [Existing PM
 + BTG 2032-Swete St-Martin St-Bachell Ave (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	[Total	ows HV]	FI Total]		Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Feet	veh/h % veh/h % v/c sec veh m km/h East: Church St E														km/h
East.	Churc	II SI E													
5	T1	All MCs	233	0.0	233	0.0	0.344	6.0	LOS A	0.9	6.4	0.45	0.59	0.45	48.2
6	R2	All MCs	155	0.0	155	0.0	0.344	8.7	LOS A	0.9	6.4	0.45	0.59	0.45	47.6
Appro	bach		387	0.0	387	0.0	0.344	7.1	LOS A	0.9	6.4	0.45	0.59	0.45	47.9
North	: Swet	te St													
7	L2	All MCs	92	0.0	92	0.0	0.244	5.7	LOS A	0.6	4.1	0.41	0.60	0.41	41.9
9	R2	All MCs	177	0.0	177	0.0	0.244	7.6	LOS A	0.6	4.1	0.41	0.60	0.41	44.2
Appro	bach		268	0.0	268	0.0	0.244	6.9	LOS A	0.6	4.1	0.41	0.60	0.41	43.7
West	: Chur	ch St W													
10	L2	All MCs	154	0.0	154	0.0	0.288	5.6	LOS A	0.7	5.1	0.40	0.52	0.40	45.1
11	T1	All MCs	176	0.0	176	0.0	0.288	4.8	LOS A	0.7	5.1	0.40	0.52	0.40	43.3
Appro	bach		329	0.0	329	0.0	0.288	5.2	LOS A	0.7	5.1	0.40	0.52	0.40	44.4
All Ve	ehicles		985	0.0	985	0.0	0.344	6.4	LOS A	0.9	6.4	0.42	0.57	0.42	45.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:23:03 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

V Site: 105v [EXISTING+BTG 2032 PM: BACHELL Ave/ Martin St (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [Existing PM + BTG 2032-Swete St-Martin St-Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

Vehio	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows	FI	rival ows	Deg. Satn	Aver. Delay	Level of Service		k Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total I veh/h		[Total l veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Churc	h Street													
5	T1	All MCs	233	0.0	233	0.0	0.344	5.9	LOS A	0.9	6.3	0.36	0.59	0.36	29.9
6	R2	All MCs	155	0.0	155	0.0	0.344	9.8	LOS A	0.9	6.3	0.36	0.59	0.36	37.4
Appro	bach		387	0.0	387	0.0	0.344	7.4	LOS A	0.9	6.3	0.36	0.59	0.36	34.0
North	: Marti	n Street													
7	L2	All MCs	92	0.0	92	0.0	0.244	5.5	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
9	R2	All MCs	177	0.0	177	0.0	0.244	9.6	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
Appro	bach		268	0.0	268	0.0	0.244	8.2	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
West:	Chur	ch Street													
10	L2	All MCs	154	0.0	154	0.0	0.279	5.3	LOS A	0.9	6.3	0.44	0.48	0.44	43.3
11	T1	All MCs	176	0.0	176	0.0	0.279	5.6	LOS A	0.9	6.3	0.44	0.48	0.44	39.4
Appro	bach		329	0.0	329	0.0	0.279	5.5	LOS A	0.9	6.3	0.44	0.48	0.44	41.7
All Ve	hicles		985	0.0	985	0.0	0.344	7.0	LOS A	0.9	6.3	0.41	0.55	0.41	36.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:23:03 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

V Site: 105v [EXISTING+BTG 2032 PM: BACHELL Ave/ Martin St (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [Existing PM + BTG 2032-Swete St-Martin St-Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

D. (\/-l-!-!		D
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	36.9	36.9 km/h
Travel Distance (Total)	veh-km/h	217.1	260.5 pers-km/h
Travel Time (Total)	veh-h/h	5.9	7.1 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency		0.61	
Travel Time Index		5.72	
Congestion Coefficient		1.63	
Demand Flows (Total)	veh/h	985	1182 pers/h
Arrival Flows (Total)	veh/h	985	1182 pers/h
Percent Heavy Vehicles (Demand)	%	0.0	·
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.344	
Practical Spare Capacity	%	147.1	
Effective Intersection Capacity	veh/h	2864	
Control Delay (Total)	veh-h/h	1.92	2.30 pers-h/h
Control Delay (Average)		7.0	7.0 sec
Control Delay (Average) Control Delay (Worst Lane by MC)	sec	8.2	7.0 Sec
Control Delay (Worst Lane by MC)	sec sec	9.8	9.8 sec
Geometric Delay (Average)	sec	5.7	9.0 300
Stop-Line Delay (Average)	sec	1.3	
Idling Time (Average)	sec	0.1	
Intersection Level of Service (LOS)	360	LOSA	
		LUSA	
Average Back of Queue - Veh (Worst Lane)		0.9	
Average Back of Queue - Dist (Worst Lane)	m	6.3	
Ave. Que Storage Ratio (Worst Lane)		0.06	
Effective Stops (Total)	veh/h	545	654 pers/h
Effective Stop Rate		0.55	0.55
Proportion Queued		0.41	0.41
Performance Index		13.5	13.5
Cost (Total)	\$/h	304.63	304.63 \$/h
Fuel Consumption (Total)	L/h	37.5	
Carbon Dioxide (Total)	kg/h	88.2	
Hydrocarbons (Total)	kg/h	0.009	
Carbon Monoxide (Total)	kg/h	0.09	
NOx (Total)	kg/h	0.040	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.2% 0.7%

Intersection Performance - An	Intersection Performance - Annual Values												
Performance Measure	Vehicles:	All MCs	Persons										
Demand Flows (Total)	veh/y	472,926	567,512 pers/y										
Arrival Flows (Total)	veh/y	472,926											
Delay (Total)	veh-h/y	919	1,103 pers-h/y										
Effective Stops (Total)	veh/y	261,435	313,722 pers/y										
Travel Distance (Total)	veh-km/y	104,212	125,055 pers-km/y										
Travel Time (Total)	veh-h/y	2,824	3,389 pers-h/y										
, , , , , , , , , , , , , , , , , , ,	•												
Cost (Total)	\$/y	146,224	146,224 \$/y										
Fuel Consumption (Total)	L/y	18,006											
Carbon Dioxide (Total)	kg/y	42,314											
Hydrocarbons (Total)	kg/y	4											
Carbon Monoxide (Total)	kg/y	44											
NOx (Total)	kg/y	19											

Site: 1066 [EX+BTG 2032 PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Existing PM + BTG 2032-Swete St-Martin St-**Bachell Ave (Network Folder:** General)]

PM Peak Hour: 5:00-6:00pm Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Performance Measure Travel Speed (Average)	Vehicles:			Dava ava
ravel Speed (Average)		All MCs	Pedestrians	Persons
	km/h	39.5 648.4	2.4 km/h	38.6 km/h
Travel Distance (Total) Travel Time (Total)	veh-km/h veh-h/h	048.4 16.4	1.1 ped-km/h 0.4 ped-h/h	779.2 pers-km/h 20.2 pers-h/h
Desired Speed	km/h	60.0	0.4 peu-1/11	20.2 pers-n/n
Speed Efficiency	NIII/11	0.66		
ravel Time Index		6.20		
Congestion Coefficient		1.52		
Demand Flows (Total)	veh/h	1162	53 ped/h	1447 pers/h
Arrival Flows (Total)	veh/h	1162		1447 pers/h
Percent Heavy Vehicles (Demand)	%	0.0		
Percent Heavy Vehicles (Arrivals)	%	0.0		
Degree of Saturation		0.658	0.020	
Practical Spare Capacity	%	36.7		
Effective Intersection Capacity	veh/h	1766		
Control Delay (Total)	veh-h/h	5.36	0.22 ped-h/h	6.65 pers-h/h
Control Delay (Average)	sec	16.6	15.2 sec	16.5 sec
Control Delay (Worst Lane by MC)	sec	23.2	10.2 000	10.0 000
Control Delay (Worst Movement by MC)	sec	23.2	15.2 sec	23.2 sec
Geometric Delay (Average)	sec	3.8		
Stop-Line Delay (Average)	sec	12.8		
dling Time (Average)	sec	9.5		
ntersection Level of Service (LOS)		LOS B	LOS B	
		5.0		
Average Back of Queue - Veh (Worst Lane)		5.8 40.6		
Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane)	m	40.6		
Effective Stops (Total)	veh/h	872	41 ped/h	1087 pers/h
Effective Stop Rate	VEII/II	0.75	0.78	0.75
Proportion Queued		0.75	0.78	0.75
Performance Index		48.3	0.7	49.0
Cost (Total)	\$/h	637.69	11.02 \$/h	648.71 \$/h
uel Consumption (Total)	L/h	70.2		
Carbon Dioxide (Total)	kg/h	164.9		
lydrocarbons (Total)	kg/h	0.015		
Carbon Monoxide (Total) NOx (Total)	kg/h kg/h	0.18 0.059		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 3.7% 29.0% 0.0%

Intersection Performance - Annual Values

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	557,811	25,263 ped/y	694,636 pers/y
Arrival Flows (Total)	veh/y	557,811		
Delay (Total)	veh-h/y	2,572	107 ped-h/y	3,193 pers-h/y
Effective Stops (Total)	veh/y	418,358	19,749 ped/y	521,778 pers/y
Travel Distance (Total)	veh-km/y	311,249	505 ped-km/y	374,004 pers-km/y
Travel Time (Total)	veh-h/y	7,887	215 ped-h/y	9,680 pers-h/y
Cost (Total)	\$/y	306,092	5,287 \$/y	311,379 \$/y
Fuel Consumption (Total)	L/y	33,683		
Carbon Dioxide (Total)	kg/y	79,158		
Hydrocarbons (Total)	kg/y	7		
Carbon Monoxide (Total)	kg/y	88		
NOx (Total)	kg/y	28		

Site: 1066 [EX+BTG 2032 PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [Existing PM + BTG 2032-Swete St-Martin St-Bachell Ave (Network Folder: General)]

PM Peak Hour: 5:00-6:00pm Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Per <u>f</u> o	orma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E	VCH/H	70	VCH/H	70	V/C	300		VCII		_	_		KIII/II
5	T1	All MCs	172	0.0	172	0.0	0.316	11.2	LOS B	2.0	14.1	0.76	0.61	0.76	19.0
6 Appro	R2 bach	All MCs	54 225	0.0 0.0	54 225	0.0 0.0	*0.316 0.316	21.0 13.6	LOS C LOS B	2.0 2.0	14.1 14.1	0.80 0.77	0.66 0.62	0.80 0.77	40.4 28.9
North	: Bach	nell Ave													
7 9	L2 R2	All MCs All MCs	126 440	0.0 0.0	126 440	0.0 0.0	0.113 * 0.658	10.2 20.8	LOS B LOS C	0.8 5.8	5.7 40.6	0.45 0.89	0.68 0.84	0.45 0.92	44.4 35.8
Appro		All MCS	566	0.0	566	0.0	0.658	18.5	LOS C	5.8	40.6	0.80	0.84	0.92	37.7
West	: Chur	ch St W													
10	L2	All MCs	171	0.0	171	0.0	0.133	6.7	LOS A	0.4	2.9	0.30	0.63	0.30	52.1
11	T1	All MCs	200	0.0	200	0.0	*0.641	23.2	LOS C	3.1	21.4	0.98	0.84	1.08	36.5
Appro	bach		371	0.0	371	0.0	0.641	15.6	LOS B	3.1	21.4	0.67	0.74	0.72	44.4
All Ve	hicles		1162	0.0	1162	0.0	0.658	16.6	LOS B	5.8	40.6	0.75	0.75	0.78	39.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

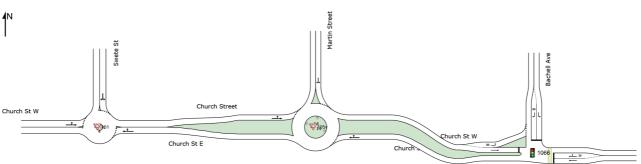
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
	ped/h	sec		ped	m			sec	m	m/sec	
East: Church St E	Ξ										
P2 Full	53	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65	
All Pedestrians	53	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65	


Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

NETWORK LAYOUT

■ Network: N101 [Existing PM + BTG 2032 Network-Swete St-Martin St-Bachell Ave (Network Folder: General)]

New Network Network Category: (None)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Church St E

SITES IN NETWORK								
Site ID	CCG ID	ite Name						
₩ 101	NA	EX+BTG 2032 PM: Church St/Swete St, Lidcombe						
₩105v	NA	EXISTING+BTG 2032 PM: BACHELL Ave/ Martin St						
1066	NA	EX+BTG 2032 PM: Church St/Bachell Ave, Lidcombe						

V Site: 101 [EX+BTG 2032 PM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

 Network: N101 [Existing PM + BTG 2032 Network-Swete St-Martin St-Bachell Ave (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

ntersection Performance - Hourly Val			
Performance Measure	Vehicles:	All MCs	Persons
ravel Speed (Average)	km/h	45.7	45.7 km/h
Travel Distance (Total)	veh-km/h	866.6	1039.9 pers-km/h
ravel Time (Total)	veh-h/h	18.9	22.7 pers-h/h
Desired Speed	km/h	52.0	
Speed Efficiency Fravel Time Index		0.88 8.66	
		8.66	
Congestion Coefficient		1.14	
Demand Flows (Total)	veh/h	985	1182 pers/h
Arrival Flows (Total)	veh/h	985	1182 pers/h
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.344	
Practical Spare Capacity	%	147.0	
Effective Intersection Capacity	veh/h	2863	
Control Delay (Total)	veh-h/h	1.75	2.10 pers-h/h
Control Delay (Average)	sec	6.4	6.4 sec
Control Delay (Worst Lane by MC)	sec	7.1	
Control Delay (Worst Movement by MC)	sec	8.7	8.7 sec
Geometric Delay (Average)	sec	5.3	
Stop-Line Delay (Àverage)	sec	1.1	
dling Time (Average)	sec	0.0	
ntersection Level of Service (LOS)		LOS A	
verage Back of Queue - Veh (Worst Lane)	veh	0.9	
Average Back of Queue - Dist (Worst Lane)		6.4	
Ave. Que Storage Ratio (Worst Lane)		0.01	
Effective Stops (Total)	veh/h	558	670 pers/h
Effective Stop Rate		0.57	0.57
Proportion Queued		0.42	0.42
Performance Index		25.3	25.3
Cost (Total)	\$/h	711.18	711.18 \$/h
Cost (Total) Fuel Consumption (Total)	۶/n L/h	69.9	(11.10 Φ/Π
Carbon Dioxide (Total)	kg/h	164.2	
Hydrocarbons (Total)	kg/h	0.013	
Carbon Monoxide (Total)	kg/h	0.013	
NOx (Total)	kg/h	0.15	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 100.0% 0.0% 0.9%

Intersection Performance - An	Intersection Performance - Annual Values												
Performance Measure	Vehicles:	All MCs	Persons										
Demand Flows (Total)	veh/y	472,926	567,512 pers/y										
Arrival Flows (Total)	veh/y	472,926											
Delay (Total)	veh-h/y	839	1,007 pers-h/y										
Effective Stops (Total)	veh/y	268,006	321,607 pers/y										
Travel Distance (Total)	veh-km/y	415,956	499,147 pers-km/y										
Travel Time (Total)	veh-h/y	9,093	10,912 pers-h/y										
· /													
Cost (Total)	\$/y	341,365	341,365 \$/y										
Fuel Consumption (Total)	L/y	33,532											
Carbon Dioxide (Total)	kg/y	78,801											
Hydrocarbons (Total)	kg/y	6											
Carbon Monoxide (Total)	kg/y	70											
NOx (Total)	kg/y	22											

V Site: 101 [EX+BTG 2032 PM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

 Network: N101 [Existing PM + BTG 2032 Network-Swete St-Martin St-Bachell Ave (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total I veh/h	ows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E	VCII/II	70	VGH/H	70	V/C	360	_	Ven		_	_		KIII/II
5 6 Appro	T1 R2 bach	All MCs All MCs	155	0.0 0.0 0.0	233 155 387	0.0 0.0 0.0	0.344 0.344 0.344	6.0 8.7 7.1	LOS A LOS A LOS A	0.9 0.9 0.9	6.4 6.4 6.4	0.45 0.45 0.45	0.59 0.59 0.59	0.45 0.45 0.45	48.2 47.6 47.9
North	: Swet	te St													
7 9	L2 R2	All MCs All MCs		0.0 0.0	92 177	0.0 0.0	0.244 0.244	5.7 7.6	LOS A LOS A	0.6 0.6	4.1 4.1	0.41 0.41	0.60 0.60	0.41 0.41	41.9 44.2
Appro	bach		268	0.0	268	0.0	0.244	6.9	LOS A	0.6	4.1	0.41	0.60	0.41	43.7
West	Chur	ch St W													
10	L2	All MCs	154	0.0	154	0.0	0.288	5.6	LOS A	0.7	5.1	0.40	0.52	0.40	45.1
11	T1	All MCs	176	0.0	176	0.0	0.288	4.8	LOS A	0.7	5.1	0.40	0.52	0.40	43.3
Appro	bach		329	0.0	329	0.0	0.288	5.2	LOS A	0.7	5.1	0.40	0.52	0.40	44.4
All Ve	hicles		985	0.0	985	0.0	0.344	6.4	LOS A	0.9	6.4	0.42	0.57	0.42	45.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:23:03 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

V Site: 105v [EXISTING+BTG 2032 PM: BACHELL Ave/ Martin St (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [Existing PM + BTG 2032 Network-Swete St-Martin St-Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Val			
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	36.9 217.1 5.9 60.0 0.61 5.72 1.63	36.9 km/h 260.5 pers-km/h 7.1 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	985 985 0.0 0.344 147.1 2864	1182 pers/h 1182 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.92 7.0 8.2 9.8 5.7 1.3 0.1 LOS A	2.30 pers-h/h 7.0 sec 9.8 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		0.9 6.3 0.06 545 0.55 0.41 13.5	654 pers/h 0.55 0.41 13.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	304.63 37.5 88.2 0.009 0.09 0.040	304.63 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.2% 0.7%

Intersection Performance - An	inual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	472,926	567,512 pers/y
Arrival Flows (Total)	veh/y	472,926	
Delay (Total)	veh-h/y	919	1,103 pers-h/y
Effective Stops (Total)	veh/y	261,435	313,722 pers/y
Travel Distance (Total)	veh-km/y	104,212	125,055 pers-km/y
Travel Time (Total)	veh-h/y	2,824	3,389 pers-h/y
, , , , , , , , , , , , , , , , , , ,			
Cost (Total)	\$/y	146,224	146,224 \$/y
Fuel Consumption (Total)	L/y	18,006	
Carbon Dioxide (Total)	kg/y	42,314	
Hydrocarbons (Total)	kg/y	4	
Carbon Monoxide (Total)	kg/y	44	
NOx (Total)	kg/y	19	

V Site: 105v [EXISTING+BTG 2032 PM: BACHELL Ave/ Martin St (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [Existing PM + BTG 2032 Network-Swete St-Martin St-Bachell Ave (Network Folder: General)]

New Site Site Category: (None) Roundabout

Vehio	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows	FI	rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back		e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total l veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Churc	h Street													
5	T1	All MCs	233	0.0	233	0.0	0.344	5.9	LOS A	0.9	6.3	0.36	0.59	0.36	29.9
6	R2	All MCs	155	0.0	155	0.0	0.344	9.8	LOS A	0.9	6.3	0.36	0.59	0.36	37.4
Appro	ach		387	0.0	387	0.0	0.344	7.4	LOS A	0.9	6.3	0.36	0.59	0.36	34.0
North	: Mart	in Street													
7	L2	All MCs	92	0.0	92	0.0	0.244	5.5	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
9	R2	All MCs	177	0.0	177	0.0	0.244	9.6	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
Appro	ach		268	0.0	268	0.0	0.244	8.2	LOS A	0.7	4.6	0.46	0.59	0.46	34.1
West:	Chur	ch Street													
10	L2	All MCs	154	0.0	154	0.0	0.279	5.3	LOS A	0.9	6.3	0.44	0.48	0.44	43.3
11	T1	All MCs	176	0.0	176	0.0	0.279	5.6	LOS A	0.9	6.3	0.44	0.48	0.44	39.4
Appro	ach		329	0.0	329	0.0	0.279	5.5	LOS A	0.9	6.3	0.44	0.48	0.44	41.7
All Ve	hicles		985	0.0	985	0.0	0.344	7.0	LOS A	0.9	6.3	0.41	0.55	0.41	36.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:23:03 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

Site: 1066 [EX+BTG 2032 PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

 Network: N101 [Existing PM + BTG 2032 Network-Swete St-Martin St-Bachell Ave (Network Folder: General)]

PM Peak Hour: 5:00-6:00pm Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	39.5 648.4 16.4 60.0 0.66 6.20 1.52	2.4 km/h 1.1 ped-km/h 0.4 ped-h/h	38.6 km/h 779.2 pers-km/h 20.2 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1162 1162 0.0 0.658 36.7 1766	53 ped/h 0.020	1447 pers/h 1447 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) dling Time (Average) ntersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	5.36 16.6 23.2 23.2 3.8 12.8 9.5 LOS B	0.22 ped-h/h 15.2 sec 15.2 sec LOS B	6.65 pers-h/h 16.5 sec 23.2 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		5.8 40.6 0.04 872 0.75 0.75 48.3	41 ped/h 0.78 0.78 0.7	1087 pers/h 0.75 0.75 49.0
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	637.69 70.2 164.9 0.015 0.18 0.059	11.02 \$/h	648.71 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 3.7% 29.0% 0.0%

Intersection Performance - Annual Values

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	557,811	25,263 ped/y	694,636 pers/y
Arrival Flows (Total)	veh/y	557,811		
Delay (Total)	veh-h/y	2,572	107 ped-h/y	3,193 pers-h/y
Effective Stops (Total)	veh/y	418,358	19,749 ped/y	521,778 pers/y
Travel Distance (Total)	veh-km/y	311,249	505 ped-km/y	374,004 pers-km/y
Travel Time (Total)	veh-h/y	7,887	215 ped-h/y	9,680 pers-h/y
Cost (Total)	\$/y	306,092	5,287 \$/y	311,379 \$/y
Fuel Consumption (Total)	L/y	33,683		
Carbon Dioxide (Total)	kg/y	79,158		
Hydrocarbons (Total)	kg/y	7		
Carbon Monoxide (Total)	kg/y	88		
NOx (Total)	kg/y	28		

Site: 1066 [EX+BTG 2032 PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Existing PM + BTG 2032 Network-Swete St-Martin St-Bachell Ave (Network Folder: General)]

PM Peak Hour: 5:00-6:00pm Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Vehio	Vehicle Movement Performance														
Mov ID		Mov Class	Dem Fl	iand ows HV]	Ar	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5 6	T1 R2	All MCs All MCs		0.0 0.0	172 54	0.0 0.0	0.316 * 0.316	11.2 21.0	LOS B LOS C	2.0 2.0	14.1 14.1	0.76 0.80	0.61 0.66	0.76 0.80	19.0 40.4
Appro	ach		225	0.0	225	0.0	0.316	13.6	LOS B	2.0	14.1	0.77	0.62	0.77	28.9
North	: Bach	ell Ave													
7 9	L2 R2	All MCs All MCs		0.0 0.0	126 440	0.0 0.0	0.113 * 0.658	10.2 20.8	LOS B LOS C	0.8 5.8	5.7 40.6	0.45 0.89	0.68 0.84	0.45 0.92	44.4 35.8
Appro	ach		566	0.0	566	0.0	0.658	18.5	LOS B	5.8	40.6	0.80	0.81	0.82	37.7
West:	Chur	ch St W													
10	L2	All MCs	171	0.0	171	0.0	0.133	6.7	LOS A	0.4	2.9	0.30	0.63	0.30	52.1
11	T1	All MCs	200	0.0	200	0.0	*0.641	23.2	LOS C	3.1	21.4	0.98	0.84	1.08	36.5
Appro	ach		371	0.0	371	0.0	0.641	15.6	LOS B	3.1	21.4	0.67	0.74	0.72	44.4
All Ve	hicles		1162	0.0	1162	0.0	0.658	16.6	LOS B	5.8	40.6	0.75	0.75	0.78	39.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	Pedestrian Movement Performance													
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed				
	ped/h	sec		ped	m			sec	m	m/sec				
East: Church St E	Ξ													
P2 Full	53	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65				
All Pedestrians	53	15.2	LOS B	0.1	0.1	0.78	0.78	30.6	20.0	0.65				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

NETWORK LAYOUT

➡ Selected Routes

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

New Network Network Category: (None)

No Routes for the selected Network.

Site: 101 [Future AM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Intersection Performance - Hourly Val	ues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	45.0 1116.0 24.8 51.3 0.88 8.62 1.14	45.0 km/h 1339.2 pers-km/h 29.8 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1344 1344 0.0 0.0 0.563 50.8 2386	1613 pers/h 1613 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.36 6.3 8.6 9.3 4.9 1.4 0.1 LOS A	2.83 pers-h/h 6.3 sec 9.3 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		2.1 14.6 0.03 753 0.56 0.51 35.2	904 pers/h 0.56 0.51 35.2
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	934.61 92.9 218.4 0.017 0.19 0.063	934.61 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.4 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 2.1% 1.3% 0.7%

Intersection Performance - An	nual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	645,221	774,265 pers/y
Arrival Flows (Total)	veh/y	645,221	
Delay (Total)	veh-h/y	1,132	1,358 pers-h/y
Effective Stops (Total)	veh/y	361,475	433,770 pers/y
Travel Distance (Total)	veh-km/y	535,675	642,811 pers-km/y
Travel Time (Total)	veh-h/y	11,910	14,293 pers-h/y
· · ·	•		
Cost (Total)	\$/y	448,611	448,611 \$/y
Fuel Consumption (Total)	L/y	44,605	
Carbon Dioxide (Total)	kg/y	104,821	
Hydrocarbons (Total)	kg/y	8	
Carbon Monoxide (Total)	kg/y	92	
NOx (Total)	kg/y	30	

V Site: 101 [Future AM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	[Total	ows HV]	FI Total	rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	East: Church St E														
5	T1	All MCs	228	0.0	228	0.0	0.315	6.0	LOS A	0.8	5.9	0.48	0.58	0.48	48.2
6	R2	All MCs	112	0.0	112	0.0	0.315	8.7	LOS A	0.8	5.9	0.48	0.58	0.48	47.6
Appro	bach		340	0.0	340	0.0	0.315	6.9	LOS A	0.8	5.9	0.48	0.58	0.48	48.0
North	: Swet	te St													
7	L2	All MCs	99	0.0	99	0.0	0.327	7.4	LOS A	0.8	5.8	0.64	0.68	0.64	40.6
9	R2	All MCs	188	0.0	188	0.0	0.327	9.3	LOS A	0.8	5.8	0.64	0.68	0.64	43.5
Appro	bach		287	0.0	287	0.0	0.327	8.6	LOS A	0.8	5.8	0.64	0.68	0.64	42.8
West	Chur	ch St W													
10	L2	All MCs	321	0.0	321	0.0	0.563	5.6	LOS A	2.1	14.6	0.48	0.50	0.48	44.9
11	T1	All MCs	396	0.0	396	0.0	0.563	4.8	LOS A	2.1	14.6	0.48	0.50	0.48	43.0
Appro	bach		717	0.0	717	0.0	0.563	5.1	LOS A	2.1	14.6	0.48	0.50	0.48	44.2
All Ve	hicles		1344	0.0	1344	0.0	0.563	6.3	LOS A	2.1	14.6	0.51	0.56	0.51	45.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:50 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

V Site: 105v [Future AM: BACHELL Ave/ Martin St - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

New Site Site Category: (None) Roundabout

Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average)	km/h	37.1	37.1 km/h
ravel Speed (Average)	veh-km/h	321.1	385.3 pers-km/h
ravel Time (Total)	veh-h/h	8.7	10.4 pers-h/h
Desired Speed	km/h	60.0	10.4 pers-1//1
Speed Efficiency	NIII/11	0.62	
ravel Time Index		5.76	
Congestion Coefficient		1.62	
		1.02	
Demand Flows (Total)	veh/h	1346	1616 pers/h
Arrival Flows (Total)	veh/h	1346	1616 pers/h
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.584	
Practical Spare Capacity	%	45.6	
Effective Intersection Capacity	veh/h	2306	
Control Delay (Total)	veh-h/h	2.73	3.28 pers-h/h
Control Delay (Average)	sec	7.3	7.3 sec
Control Delay (Worst Lane by MC)	sec	10.1	1.0 000
Control Delay (Worst Movement by MC)	sec	11.5	11.5 sec
Geometric Delay (Average)	sec	5.4	
Stop-Line Delay (Average)	sec	1.9	
dling Time (Average)	sec	0.2	
ntersection Level of Service (LOS)		LOSA	
Average Back of Queue - Veh (Worst Lane)		2.7	
Average Back of Queue - Dist (Worst Lane)	m	18.8	
Ave. Que Storage Ratio (Worst Lane)	v a h /h	0.10	
Effective Stops (Total)	veh/h	755	906 pers/h
Effective Stop Rate		0.56	0.56
Proportion Queued		0.57	0.57
Performance Index		21.2	21.2
Cost (Total)	\$/h	446.71	446.71 \$/h
Fuel Consumption (Total)	Ĺ/h	54.6	
Carbon Dioxide (Total)	kg/h	128.4	
lydrocarbons (Total)	kg/h	0.013	
Carbon Monoxide (Total)	kg/h	0.13	
NOx (Total)	kg/h	0.058	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.8 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 2.9% 1.7% 0.9%

Intersection Performance - An	nual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	646,232	775,478 pers/y
Arrival Flows (Total)	veh/y	646,232	
Delay (Total)	veh-h/y	1,311	1,573 pers-h/y
Effective Stops (Total)	veh/y	362,399	434,879 pers/y
Travel Distance (Total)	veh-km/y	154,110	184,932 pers-km/y
Travel Time (Total)	veh-h/y	4,156	4,987 pers-h/y
· · ·	•		
Cost (Total)	\$/y	214,419	214,419 \$/y
Fuel Consumption (Total)	L/y	26,219	
Carbon Dioxide (Total)	kg/y	61,616	
Hydrocarbons (Total)	kg/y	6	
Carbon Monoxide (Total)	kg/y	65	
NOx (Total)	kg/y	28	

V Site: 105v [Future AM: BACHELL Ave/ Martin St - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

New Site Site Category: (None) Roundabout

Vehio	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows	FI	rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back		e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Churc	h Street													
5	T1	All MCs	192	0.0	192	0.0	0.319	5.9	LOS A	0.8	5.8	0.38	0.60	0.38	29.5
6	R2	All MCs	156	0.0	156	0.0	0.319	9.8	LOS A	0.8	5.8	0.38	0.60	0.38	37.1
Appro	ach		347	0.0	347	0.0	0.319	7.7	LOS A	0.8	5.8	0.38	0.60	0.38	34.0
North	: Marti	in Street													
7	L2	All MCs	97	0.0	97	0.0	0.329	7.4	LOS A	0.9	6.6	0.70	0.68	0.70	31.7
9	R2	All MCs	185	0.0	185	0.0	0.329	11.5	LOS B	0.9	6.6	0.70	0.68	0.70	31.7
Appro	ach		282	0.0	282	0.0	0.329	10.1	LOS B	0.9	6.6	0.70	0.68	0.70	31.7
West:	Chure	ch Street													
10	L2	All MCs	321	0.0	321	0.0	0.584	5.8	LOS A	2.7	18.8	0.62	0.50	0.62	42.1
11	T1	All MCs	396	0.0	396	0.0	0.584	6.2	LOS A	2.7	18.8	0.62	0.50	0.62	37.7
Appro	ach		717	0.0	717	0.0	0.584	6.0	LOS A	2.7	18.8	0.62	0.50	0.62	40.2
All Ve	hicles		1346	0.0	1346	0.0	0.584	7.3	LOS A	2.7	18.8	0.57	0.56	0.57	37.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:22:50 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

Site: 1066 [Future AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Practical Cycle Time)

Intersection Performance - Hourly Val	ues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	40.0 534.8 13.4 60.0 0.67 6.30 1.50	2.4 km/h 1.1 ped-km/h 0.4 ped-h/h	39.0 km/h 642.8 pers-km/h 16.5 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1237 1237 0.0 0.0 0.504 78.6 2455	53 ped/h 0.029	1537 pers/h 1537 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	4.30 12.5 21.1 21.1 4.2 8.4 5.5 LOS B	0.21 ped-h/h 14.5 sec 14.5 sec LOS B	5.37 pers-h/h 12.6 sec 21.1 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	2.3 16.4 0.04 879 0.71 0.70 27.8	45 ped/h 0.85 0.85 0.7	1100 pers/h 0.72 0.70 28.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	532.86 63.7 149.6 0.014 0.16 0.056	10.74 \$/h	543.60 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 6.6% 0.1% 0.0%

Intersection Performance - Annual Values

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	593,684	25,263 ped/y	737,684 pers/y
Arrival Flows (Total)	veh/y	593,684		0.570
Delay (Total)	veh-h/y	2,065	102 ped-h/y	2,579 pers-h/y
Effective Stops (Total)	veh/y	422,125	21,521 ped/y	528,071 pers/y
Travel Distance (Total)	veh-km/y	256,711	505 ped-km/y	308,559 pers-km/y
Travel Time (Total)	veh-h/y	6,413	210 ped-h/y	7,905 pers-h/y
Cost (Total)	\$/y	255,773	5,156 \$/y	260,929 \$/y
Fuel Consumption (Total)	L/y	30,562		
Carbon Dioxide (Total)	kg/y	71,820		
Hydrocarbons (Total)	kg/y	7		
Carbon Monoxide (Total)	kg/y	79		
NOx (Total)	kg/y	27		
NOX (Iotal)	kg/y	27		

Site: 1066 [Future AM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

AM Peak Hour: 7:30-8:30am Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Practical Cycle Time)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5	T1	All MCs	147	0.0	147	0.0	0.440	6.8	LOS A	2.1	14.8	0.70	0.58	0.70	23.5
6	R2	All MCs	173	0.0	173	0.0	*0.440	15.9	LOS B	2.1	14.8	0.85	0.75	0.85	18.6
Appro	bach		320	0.0	320	0.0	0.440	11.7	LOS B	2.1	14.8	0.78	0.67	0.78	20.6
North	: Bach	ell Ave													
7	L2	All MCs	128	0.0	128	0.0	0.132	10.8	LOS B	0.8	5.6	0.54	0.70	0.54	43.8
9	R2	All MCs	211	0.0	211	0.0	* 0.504	21.1	LOS C	2.3	16.4	0.92	0.80	0.92	35.7
Appro	bach		339	0.0	339	0.0	0.504	17.2	LOS B	2.3	16.4	0.77	0.76	0.77	38.6
West	Chur	ch St W													
10	L2	All MCs	415	0.0	415	0.0	0.359	7.4	LOS A	1.3	9.4	0.47	0.69	0.47	48.1
11	T1	All MCs	163	0.0	163	0.0	*0.478	17.2	LOS B	1.9	13.3	0.94	0.75	0.94	40.6
Appro	bach		578	0.0	578	0.0	0.478	10.2	LOS B	1.9	13.3	0.61	0.71	0.61	45.5
All Ve	hicles		1237	0.0	1237	0.0	0.504	12.5	LOS B	2.3	16.4	0.70	0.71	0.70	40.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	Pedestrian Movement Performance													
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed				
	ped/h	sec		ped	m			sec	m	m/sec				
East: Church St E	Ξ													
P2 Full	53	14.5	LOS B	0.1	0.1	0.85	0.85	29.9	20.0	0.67				
All Pedestrians	53	14.5	LOS B	0.1	0.1	0.85	0.85	29.9	20.0	0.67				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 5 [DEV-BACHELL AVE-DRIVEWAY-AM2 - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N102 [Future AM Development -Swete St-Martin ST-Bachell Ave-Site Access (Network Folder: General)]

New Site Site Category: Proposed Design 1 Roundabout

ntersection Performance - Hourly Val			
Performance Measure	Vehicles:	All MCs	Persons
ravel Speed (Average)	km/h	50.7	50.7 km/h
ravel Distance (Total)	veh-km/h	820.5	984.6 pers-km/h
ravel Time (Total)	veh-h/h	16.2	19.4 pers-h/h
Desired Speed	km/h	60.0	
Speed Efficiency		0.85	
ravel Time Index		8.28	
Congestion Coefficient		1.18	
Demand Flows (Total)	veh/h	1058	1269 pers/h
Arrival Flows (Total)	veh/h	1058	1269 pers/h
Percent Heavy Vehicles (Demand)	%	0.0	
Percent Heavy Vehicles (Arrivals)	%	0.0	
Degree of Saturation		0.403	
Practical Spare Capacity	%	110.7	
Effective Intersection Capacity	veh/h	2623	
Control Delay (Total)	veh-h/h	1.91	2.30 pers-h/h
Control Delay (Average)	sec	6.5	6.5 sec
Control Delay (Worst Lane by MC)	sec	9.6	
Control Delay (Worst Movement by MC)	sec	11.6	11.6 sec
Geometric Delay (Average)	sec	5.7	
Stop-Line Delay (Average)	sec	0.8	
dling Time (Average)	sec	0.0	
ntersection Level of Service (LOS)		LOS A	
verage Back of Queue - Veh (Worst Lane)	veh	1.2	
Average Back of Queue - Dist (Worst Lane)		8.4	
Ave. Que Storage Ratio (Worst Lane)		0.02	
Effective Stops (Total)	veh/h	602	723 pers/h
ffective Stop Rate		0.57	0.57
Proportion Queued		0.27	0.27
Performance Index		25.6	25.6
Cost (Total)	\$/h	753.79	753.79 \$/h
Fuel Consumption (Total)	J/h	72.0	100.19 WII
Carbon Dioxide (Total)	kg/h	169.3	
Hydrocarbons (Total)	kg/h	0.015	
Carbon Monoxide (Total)	kg/h	0.20	
NOx (Total)	kg/h	0.056	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.4 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.8% 1.0%

Intersection Performance - An	nual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	507,790	609,347 pers/y
Arrival Flows (Total)	veh/y	507,790	
Delay (Total)	veh-h/y	919	1,103 pers-h/y
Effective Stops (Total)	veh/y	289,079	346,895 pers/y
Travel Distance (Total)	veh-km/y	393,835	472,602 pers-km/y
Travel Time (Total)	veh-h/y	7,768	9,321 pers-h/y
х <i>г</i>	•		
Cost (Total)	\$/y	361,819	361,819 \$/y
Fuel Consumption (Total)	L/y	34,580	
Carbon Dioxide (Total)	kg/y	81,264	
Hydrocarbons (Total)	kg/y	7	
Carbon Monoxide (Total)	kg/y	95	
NOx (Total)	kg/y	27	

W Site: 5 [DEV-BACHELL AVE-DRIVEWAY-AM2 - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N102 [Future AM **Development -Swete St-Martin ST-Bachell Ave-Site Access** (Network Folder: General)]

New Site Site Category: Proposed Design 1 Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	SITE DR													
1	L2	All MCs	83	0.0	83	0.0	0.098	6.3	LOS A	0.2	1.5	0.47	0.60	0.47	44.5
2	T1	All MCs	1	0.0	1	0.0	0.098	6.3	LOS A	0.2	1.5	0.47	0.60	0.47	50.9
3	R2	All MCs	13	0.0	13	0.0	0.098	9.3	LOS A	0.2	1.5	0.47	0.60	0.47	50.1
Appro	bach		97	0.0	97	0.0	0.098	6.7	LOS A	0.2	1.5	0.47	0.60	0.47	46.0
North	East: I	BACHELI	AVEN	UE											
4	L2	All MCs	41	0.0	41	0.0	0.317	6.9	LOS A	0.8	5.6	0.53	0.57	0.53	50.1
5	T1	All MCs	277	0.0	277	0.0	0.317	6.9	LOS A	0.8	5.6	0.53	0.57	0.53	48.5
6	R2	All MCs	1	0.0	1	0.0	0.317	9.9	LOS A	0.8	5.6	0.53	0.57	0.53	51.3
Appro	bach		319	0.0	319	0.0	0.317	6.9	LOS A	0.8	5.6	0.53	0.57	0.53	48.8
North	West:	RAWSO	N STRE	ET											
7	L2	All MCs	1	0.0	1	0.0	0.004	8.6	LOS A	0.0	0.1	0.63	0.57	0.63	50.0
8	T1	All MCs	1	0.0	1	0.0	0.004	8.6	LOS A	0.0	0.1	0.63	0.57	0.63	48.7
9	R2	All MCs	1	0.0	1	0.0	0.004	11.6	LOS B	0.0	0.1	0.63	0.57	0.63	45.8
Appro	bach		3	0.0	3	0.0	0.004	9.6	LOS A	0.0	0.1	0.63	0.57	0.63	48.6
South	West:	BACHEL		NUE											
10	L2	All MCs	1	0.0	1	0.0	0.403	4.9	LOS A	1.2	8.4	0.11	0.56	0.11	52.1
11	T1	All MCs	340	0.0	340	0.0	0.403	4.9	LOS A	1.2	8.4	0.11	0.56	0.11	52.6
12	R2	All MCs	298	0.0	298	0.0	0.403	7.9	LOS A	1.2	8.4	0.11	0.56	0.11	50.4
Appro	bach		639	0.0	639	0.0	0.403	6.3	LOS A	1.2	8.4	0.11	0.56	0.11	51.6
All Ve	hicles		1058	0.0	1058	0.0	0.403	6.5	LOS A	1.2	8.4	0.27	0.57	0.27	50.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

NETWORK LAYOUT

➡ Selected Routes

Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

New Network Network Category: (None)

No Routes for the selected Network.

Site: 101 [Future PM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Intersection Performance - Hourly Val			
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	46.1 1061.6 23.0 52.3 0.88 8.68 1.13	46.1 km/h 1273.9 pers-km/h 27.7 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1219 1219 0.0 0.0 0.471 80.3 2586	1463 pers/h 1463 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.09 6.2 7.5 8.8 5.0 1.2 0.0 LOS A	2.51 pers-h/h 6.2 sec 8.8 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		1.5 10.3 0.02 673 0.55 0.45 31.3	807 pers/h 0.55 0.45 31.3
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	866.03 85.3 200.6 0.016 0.18 0.057	866.03 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.1% 0.6%

Intersection Performance - An	nual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	585,095	702,114 pers/y
Arrival Flows (Total)	veh/y	585,095	
Delay (Total)	veh-h/y	1,003	1,204 pers-h/y
Effective Stops (Total)	veh/y	322,856	387,428 pers/y
Travel Distance (Total)	veh-km/y	509,562	611,475 pers-km/y
Travel Time (Total)	veh-h/y	11,063	13,276 pers-h/y
· · ·			
Cost (Total)	\$/y	415,693	415,693 \$/y
Fuel Consumption (Total)	L/y	40,965	
Carbon Dioxide (Total)	kg/y	96,267	
Hydrocarbons (Total)	kg/y	7	
Carbon Monoxide (Total)	kg/y	87	
NOx (Total)	kg/y	27	

V Site: 101 [Future PM: Church St/Swete St, Lidcombe (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

AM Peak Hour: 5:00-6:00pm Site Category: (None) Roundabout

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5 6 Appro	T1 R2 bach	All MCs All MCs		0.0 0.0 0.0	443 95 538	0.0 0.0 0.0	0.471 0.471 0.471	6.2 8.8 6.6	LOS A LOS A LOS A	1.5 <u>1.5</u> 1.5	10.3 10.3 10.3	0.52 0.52 0.52	0.57 0.57 0.57	0.52 0.52 0.52	48.2 47.7 48.1
North			00		00	0.0	0.074	0.0	100.4	0.0	4.5	0.50	0.00	0.50	44.0
7 9	L2 R2	All MCs All MCs	177	0.0 0.0	96 177	0.0 0.0	0.271 0.271	6.3 8.2	LOS A LOS A	0.6 0.6	4.5 4.5	0.50 0.50	0.63 0.63	0.50 0.50	41.6 44.0
Appro			273	0.0	273	0.0	0.271	7.5	LOS A	0.6	4.5	0.50	0.63	0.50	43.5
		ch St W													
10 11	L2 T1	All MCs All MCs		0.0 0.0	154 255	0.0 0.0	0.324 0.324	5.2 4.4	LOS A LOS A	0.9 0.9	6.3 6.3	0.33 0.33	0.48 0.48	0.33 0.33	45.3 43.6
Appro	bach		408	0.0	408	0.0	0.324	4.7	LOS A	0.9	6.3	0.33	0.48	0.33	44.5
All Ve	hicles		1219	0.0	1219	0.0	0.471	6.2	LOS A	1.5	10.3	0.45	0.55	0.45	46.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:36:12 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

V Site: 105v [Future PM: BACHELL Ave/ Martin St - Copy - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Val			
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	36.2 248.0 6.9 60.0 0.60 5.59 1.66	36.2 km/h 297.6 pers-km/h 8.2 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1204 1204 0.0 0.0 0.489 73.7 2461	1445 pers/h 1445 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.34 7.0 8.6 10.0 5.5 1.5 0.1 LOS A	2.81 pers-h/h 7.0 sec 10.0 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		1.5 10.8 0.11 667 0.55 0.44 16.8	801 pers/h 0.55 0.44 16.8
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	357.39 44.6 104.8 0.011 0.11 0.048	357.39 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.1 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.3% 0.8%

Intersection Performance - An	nual Values		
Performance Measure	Vehicles:	All MCs	Persons
Demand Flows (Total)	veh/y	578,021	693,625 pers/y
Arrival Flows (Total)	veh/y	578,021	
Delay (Total)	veh-h/y	1,122	1,347 pers-h/y
Effective Stops (Total)	veh/y	320,295	384,354 pers/y
Travel Distance (Total)	veh-km/y	119,032	142,839 pers-km/y
Travel Time (Total)	veh-h/y	3,291	3,949 pers-h/y
х <i>У</i>			
Cost (Total)	\$/y	171,546	171,546 \$/y
Fuel Consumption (Total)	L/y	21,413	•
Carbon Dioxide (Total)	kg/y	50,322	
Hydrocarbons (Total)	kg/y	5	
Carbon Monoxide (Total)	kg/y	52	
NOx (Total)	kg/y	23	

V Site: 105v [Future PM: BACHELL Ave/ Martin St - Copy - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

New Site Site Category: (None) Roundabout

Vehio	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows	FI	rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back		e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Churc	h Street													
5	T1	All MCs	408	0.0	408	0.0	0.489	6.1	LOS A	1.5	10.8	0.40	0.58	0.40	30.1
6	R2	All MCs	155	0.0	155	0.0	0.489	10.0	LOS A	1.5	10.8	0.40	0.58	0.40	37.6
Appro	ach		563	0.0	563	0.0	0.489	7.2	LOS A	1.5	10.8	0.40	0.58	0.40	33.1
North	: Marti	in Street													
7	L2	All MCs	92	0.0	92	0.0	0.258	5.8	LOS A	0.7	4.9	0.52	0.61	0.52	33.7
9	R2	All MCs	177	0.0	177	0.0	0.258	10.0	LOS B	0.7	4.9	0.52	0.61	0.52	33.7
Appro	ach		268	0.0	268	0.0	0.258	8.6	LOS A	0.7	4.9	0.52	0.61	0.52	33.7
West:	Chure	ch Street													
10	L2	All MCs	154	0.0	154	0.0	0.314	5.4	LOS A	1.1	7.4	0.46	0.48	0.46	43.1
11	T1	All MCs	219	0.0	219	0.0	0.314	5.7	LOS A	1.1	7.4	0.46	0.48	0.46	39.2
Appro	ach		373	0.0	373	0.0	0.314	5.5	LOS A	1.1	7.4	0.46	0.48	0.46	41.3
All Ve	hicles		1204	0.0	1204	0.0	0.489	7.0	LOS A	1.5	10.8	0.44	0.55	0.44	36.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LYLE MARSHALL & PARTNERS PTY LTD | Licence: NETWORK / 1PC | Processed: Tuesday, 24 September 2024 12:36:12 PM Project: M:\LMA Jobs\SIDRA\1194-22-Bachell Ave Lidcombe\1194-22 2 Bachell Avenue_REV-SIDRA-2024-09-23.sip9

Site: 1066 [Future PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

PM Peak Hour: 5:00-6:00pm Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Practical Cycle Time)

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	33.6 722.9 21.5 60.0 0.56 5.10 1.79	2.6 km/h 1.1 ped-km/h 0.4 ped-h/h	33.1 km/h 868.5 pers-km/h 26.3 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % % veh/h	1535 1535 0.0 0.0 0.810 11.2 1896	53 ped/h 0.013	1894 pers/h 1894 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) dling Time (Average) ntersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	9.34 21.9 31.3 31.3 4.2 17.7 12.6 LOS C	0.19 ped-h/h 12.7 sec 12.7 sec LOS B	11.40 pers-h/h 21.7 sec 31.3 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		11.7 81.7 0.06 1243 0.81 0.76 51.0	34 ped/h 0.65 0.65 0.6	1526 pers/h 0.81 0.75 51.6
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	808.58 88.3 207.5 0.020 0.22 0.075	10.10 \$/h	818.68 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 5.9% 17.6% 0.1%

Intersection Performance - Annual Values

Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	736,674	25,263 ped/y	909,272 pers/y
Arrival Flows (Total)	veh/y	736,674		
Delay (Total)	veh-h/y	4,484	89 ped-h/y	5,470 pers-h/y
Effective Stops (Total)	veh/y	596,876	16,457 ped/y	732,708 pers/y
Travel Distance (Total)	veh-km/y	346,980	505 ped-km/y	416,881 pers-km/y
Travel Time (Total)	veh-h/y	10,340	197 ped-h/y	12,605 pers-h/y
Cost (Total)	\$/y	388,120	4,849 \$/y	392,969 \$/y
Fuel Consumption (Total)	L/y	42,378		
Carbon Dioxide (Total)	kg/y	99,589		
Hydrocarbons (Total)	kg/y	10		
Carbon Monoxide (Total)	kg/y	107		
NOx (Total)	kg/y	36		

Site: 1066 [Future PM: Church St/Bachell Ave, Lidcombe (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

PM Peak Hour: 5:00-6:00pm Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Practical Cycle Time)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Churc	h St E													
5	T1	All MCs	172	0.0	172	0.0	0.468	17.4	LOS B	3.0	21.3	0.85	0.68	0.85	14.0
6	R2	All MCs	79	0.0	79	0.0	*0.468	29.6	LOS C	3.0	21.3	0.92	0.75	0.92	12.6
Appro	bach		251	0.0	251	0.0	0.468	21.2	LOS C	3.0	21.3	0.87	0.70	0.87	13.5
North	: Bach	nell Ave													
7	L2	All MCs	174	0.0	174	0.0	0.140	12.3	LOS B	1.1	8.0	0.39	0.67	0.39	45.0
9	R2	All MCs	656	0.0	656	0.0	*0.810	27.8	LOS C	11.7	81.7	0.92	0.92	1.06	33.2
Appro	bach		829	0.0	829	0.0	0.810	24.5	LOS C	11.7	81.7	0.81	0.87	0.92	33.6
West	: Chur	ch St W													
10	L2	All MCs	255	0.0	255	0.0	0.197	6.7	LOS A	0.7	5.2	0.28	0.63	0.28	49.2
11	T1	All MCs	200	0.0	200	0.0	*0.769	31.3	LOS C	3.9	27.4	1.00	0.93	1.25	32.2
Appro	bach		455	0.0	455	0.0	0.769	17.5	LOS B	3.9	27.4	0.60	0.76	0.71	39.3
All Ve	ehicles		1535	0.0	1535	0.0	0.810	21.9	LOS C	11.7	81.7	0.76	0.81	0.85	33.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Mo	Pedestrian Movement Performance												
Mov ID Crossing	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed			
	ped/h	sec		ped	m			sec	m	m/sec			
East: Church St E	East: Church St E												
P2 Full	53	12.7	LOS B	0.1	0.1	0.65	0.65	28.1	20.0	0.71			
All Pedestrians	53	12.7	LOS B	0.1	0.1	0.65	0.65	28.1	20.0	0.71			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 5 [DEV-BACHELL AVE-DRIVEWAY-PM - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Future PM Development-Swete St-Martin St- Bachell Ave-Site Acccess (Network Folder: General)]

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Val	ues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	48.9 786.5 16.1 60.0 0.82 7.95 1.23	48.9 km/h 943.9 pers-km/h 19.3 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1267 1267 0.0 0.0 0.471 80.5 2691	1521 pers/h 1521 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	2.42 6.9 9.8 12.3 5.2 1.7 0.4 LOS A	2.91 pers-h/h 6.9 sec 12.3 sec
Average Back of Queue - Veh (Worst Lane) Average Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index		1.5 10.2 0.03 716 0.57 0.46 29.5	860 pers/h 0.57 0.46 29.5
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	760.16 75.8 178.2 0.016 0.20 0.063	760.16 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 2.0 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 3.2% 1.8% 1.0%

Intersection Performance - Annual Values											
Performance Measure	Vehicles:	All MCs	Persons								
Demand Flows (Total)	veh/y	608,337	730,004 pers/y								
Arrival Flows (Total)	veh/y	608,337									
Delay (Total)	veh-h/y	1,164	1,397 pers-h/y								
Effective Stops (Total)	veh/y	343,887	412,664 pers/y								
Travel Distance (Total)	veh-km/y	377,541	453,049 pers-km/y								
Travel Time (Total)	veh-h/y	7,714	9,257 pers-h/y								
х <i>Г</i>	•										
Cost (Total)	\$/y	364,876	364,876 \$/y								
Fuel Consumption (Total)	L/y	36,399	-								
Carbon Dioxide (Total)	kg/y	85,538									
Hydrocarbons (Total)	kg/y	8									
Carbon Monoxide (Total)	kg/y	98									
NOx (Total)	kg/y	30									

W Site: 5 [DEV-BACHELL AVE-DRIVEWAY-PM - Copy (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.6.228

■ Network: N101 [Future PM **Development-Swete St-Martin** St- Bachell Ave-Site Acccess (Network Folder: General)]

New Site Site Category: (None) Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	SITE DR			ven/n	70	v/C	Sec	_	ven	111	_	_	_	KIII/II
1	L2	All MCs	271	0.0	271	0.0	0.421	9.3	LOS A	1.2	8.1	0.76	0.73	0.78	40.3
2	T1	All MCs	1	0.0	1	0.0	0.421	9.3	LOS A	1.2	8.1	0.76	0.73	0.78	48.5
3	R2	All MCs	54	0.0	54	0.0	0.421	12.3	LOS B	1.2	8.1	0.76	0.73	0.78	47.8
Appro	oach		325	0.0	325	0.0	0.421	9.8	LOS A	1.2	8.1	0.76	0.73	0.78	42.5
North	nEast:	BACHELI	LAVEN	UE											
4	L2	All MCs	28	0.0	28	0.0	0.471	5.7	LOS A	1.5	10.2	0.41	0.49	0.41	50.5
5	T1	All MCs	566	0.0	566	0.0	0.471	5.7	LOS A	1.5	10.2	0.41	0.49	0.41	49.2
6	R2	All MCs	1	0.0	1	0.0	0.471	8.7	LOS A	1.5	10.2	0.41	0.49	0.41	51.7
Appro	oach		596	0.0	596	0.0	0.471	5.7	LOS A	1.5	10.2	0.41	0.49	0.41	49.3
North	West:	RAWSO	N STRE	ET											
7	L2	All MCs	1	0.0	1	0.0	0.003	6.7	LOS A	0.0	0.0	0.49	0.55	0.49	51.2
8	T1	All MCs	1	0.0	1	0.0	0.003	6.7	LOS A	0.0	0.0	0.49	0.55	0.49	50.1
9	R2	All MCs	1	0.0	1	0.0	0.003	9.7	LOS A	0.0	0.0	0.49	0.55	0.49	47.9
Appro	oach		3	0.0	3	0.0	0.003	7.7	LOS A	0.0	0.0	0.49	0.55	0.49	50.1
South	nWest:	BACHEL	L AVE	NUE											
10	L2	All MCs	1	0.0	1	0.0	0.255	5.1	LOS A	0.7	4.8	0.24	0.53	0.24	52.0
11	T1	All MCs	224	0.0	224	0.0	0.255	5.1	LOS A	0.7	4.8	0.24	0.53	0.24	52.4
12	R2	All MCs	118	0.0	118	0.0	0.255	8.1	LOS A	0.7	4.8	0.24	0.53	0.24	50.2
Appro	oach		343	0.0	343	0.0	0.255	6.1	LOS A	0.7	4.8	0.24	0.53	0.24	51.7
All Ve	ehicles		1267	0.0	1267	0.0	0.471	6.9	LOS A	1.5	10.2	0.46	0.57	0.46	48.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.